
T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 1

Course: Concurrent & Distributed SystemsCourse: Concurrent & Distributed Systems
December 12th, 2016 – University of PisaDecember 12th, 2016 – University of Pisa

Seminar on

““Fault Tolerance in Cloud ComputingFault Tolerance in Cloud Computing””

by

Prof. Tommaso Cucinotta
Real-Time Systems Laboratory (ReTiS)

Scuola Superiore Sant’Anna



T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 2

History, background & History, background & 
skillsskills

Let me introduce myself…
• 2000: MSc in Computer Engineering
‒ Thesis: PKCS#11 module for Netscape

• 2004: PhD in Computer Engineering
‒ Interoperability in open-source smart-card solutions

‒ Open-source MuscleCard framework → RedHat CoolKey

• 2004-2012: Researcher et al. at the ReTiS

‒ Adaptive scheduling for soft real-time systems

‒ Deadline-based scheduler for the Linux kernel for improved 
responsiveness of soft real-time, multimedia & virtualized services

• 2012-2014: MTS in Bell Labs: research on security and real-time 
performance of cloud applications (NFV/IMS)

• 2014-2015
‒ SDE in AWS DynamoDB: real-time performance and scalability of 

DynamoDB

• 2016-...
‒ Associate Professor at the ReTiS

‒ Joint UniPi/SSSA MSc degree on Embedded Computing Systems



T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 3

AWS DynamoDBAWS DynamoDB



T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 4

AWS DynamoDBAWS DynamoDB

What is DynamoDB
• Fully-managed 24/7 NoSQL DB service supporting
‒ Single-digit ms latency with guaranteed read/write throughput
‒ Elastic growth of tables up to arbitrary size

Data model
• A table is a collection of items, composed of attributes
• Primary key
‒ partition hash key: looked up by exact key (query)
‒ optional sort key: within each partition, items sorted by sort key

Other options
• Secondary indexes
• Support for structured JSON contents
• DynamoDB Streams



T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 5

AWS DynamoDBAWS DynamoDB

Performance model
• At table creation time, you specify RCUs and WCUs
‒ R/W beyond the provisioned capacity results in user errors

• Support for dynamic change of RCUs and WCUs
‒ Increasing a table capacity, as well as growing it with more and 

more data, will cause it to split into more and more partitions

Consistency model
• Consistent read of <4KB consumes a single RCU

• Eventually consistent read of <4KB consumes 0.5 RCU

• Once you get OK (200) from a write, you can safely sleep
‒ data is already stored durably on (more) SSD disks



T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 6

AWS DynamoDBAWS DynamoDB

Operations
• “System” composed of zillions of machines
• Geo-distributed: DynamoDB available in ~all AWS DCs
• Tables can grow arbitrarily in size => they continuously split into 

more and more partitions
• Failures continuously happen at all levels
‒ Hardware failures (host, power, CPU, memory, network, disk)
‒ Software failures (application, libraries, middleware, kernel)

– replication protocol provably correct in tolerating peers' failures

• Software upgrades continuously happen
‒ DynamoDB components, as well as thousands of dependencies within 

the AWS eco-system, need continuous upgrades

• Operators' mistakes do happen as well
• Performance and availability SLA under all said conditions



T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 7

FailuresFailures

Individual server failure examples
• server unreachable due to network issues
• server down due to unplanned restart (e.g., server crash / killed by 

OS / by an operator / kernel panic & machine reboot)
• down due to planned maintenance (software upgrade)
‒ rolling an upgrade in a region gracefully by sub-clusters takes several hours
‒ several services/components continuously patched/upgraded across 

several geographical regions

Whole data-center failure example
• power outage
• cooling failure
• network failure (fiber cut)
• natural disasters



T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 8

Operations tasksOperations tasks

Primary task/goal: keep service up & healthy 24/7
• up == availability
• healthy == satisfying functional & non-functional 

requirements
‒ implies resolve promptly issues reported by customers

Secondary tasks:
• root-cause analysis (RCA)
• feed information back to developers to reduce operations’ 

burden (mostly hit bugs need urgent fixes)
• enhance automation in operations handling

Escalation path for primary operators to engage 
secondary ones and experts when needed



T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 9

DevOps Life CycleDevOps Life Cycle

Bug fixingBug fixing New releasesNew releases

Run-time
issues

Run-time
issues

Operations
Root-cause

analysis
Root-cause

analysis

Software
development

- known bugs
- feature enhan.
- new features

- known bugs
- feature enhan.
- new features

Feature enh.Feature enh.

New featuresNew features

New systemsNew systems

- business object.
- market analyses
- customers req.
- financial constr.

- business object.
- market analyses
- customers req.
- financial constr.

DeploymentDeployment

Enable new f.Enable new f.

DC-wide opsDC-wide ops

Customer
support

Customer
support

MaintenanceMaintenance



T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 10

OperationsOperations

Idealistic view
• fully automated cloud system (infrastructure / service)

Realistic view
• a number of problems need operators’ intervention
• infrastructure is huge => significant operations load

Operations challenges for big cloud 
infrastructures
• reduction of operations (human) load
• continuous improvement of automation
‒ infrastructure expands as business grows
‒ operations workload grows with infrastructure size
‒ DC-wide operations (new DC / DC shutdown) need plenty of 

manual work

• handling of peak operations load (e.g., outages need 
plenty of manual work by many)

• develop/improve tools for root-cause analysis
• develop/improve tools for performance troubleshooting
• identify non-monitored data sets that are critical for the 

above steps
• keep monitoring overheads at sustainable levels
‒ monitoring everything with the finest granularity is just unfeasible



T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 11

Distributed ConsensusDistributed Consensus



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 12

Distributed ConsensusDistributed Consensus

The problem
• A set of processes can propose 

values

• They need to agree on one of the 
proposed values

• They should learn what value has 
been chosen

Safety requirements
• Only one value among proposed 

ones can be chosen

• A process cannot learn a value 
that has not been chosen

v=?v=?

AA BB

CC DD

v=v1 v=
v2

v=
v3

v=v4



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 13

Distributed ConsensusDistributed Consensus

Scenario: replicated SM
• SM replicas get messages 

causing state switches

• SM replicas agree on the 
sequence of transitions and 
SM state

Scenario: replicated DB
• DB replicas get requests

• DB replicas agree on 
committed transactions and 
DB contents

AA BB

CC DD

1: msg1
2: msg3
3: msg2

...

m
sg1

m
sg2

m
sg3



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 14

Traditional ACID Traditional ACID 
transaction propertiestransaction properties

Atomicity
• All (commit) or nothing (abort)

Consistency
• Always consistent

Isolation
• w.r.t. parallelism, each transaction executes as if isolated; => 

serializability

Durability
• Results are preserved and durable despite failures



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 15

Two phase commitTwo phase commit

2PC roles
• Resource Coordinator (RC)

• Resource Managers (RMs) RCRC RM
n

RM
nRM

1
RM

1 ...



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 16

Two phase commitTwo phase commit

2PC roles
• Resource Coordinator (RC)

• Resource Managers (RMs)

2PC protocol
• voting phase: RC suggests a 

value to all RMs, which respond 
whether they agree

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Yes / No

Yes / No
...

V
ot

in
g 

ph
as

e



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 17

Two phase commitTwo phase commit

2PC roles
• Resource Coordinator (RC)

• Resource Managers (RMs)

2PC protocol
• voting phase: RC suggests a 

value to all RMs, which respond 
whether they agree

• commit phase: RC sends 
commit to all RMs if all RMs 
replied yes (or sends abort 
otherwise)

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Yes / No

Yes / No
...

commit(v1) / abort

commit(v1) / abort
...

V
ot

in
g 

ph
as

e
C

om
m

it 
ph

as
e



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 18

Two phase commitTwo phase commit

2PC roles
• Resource Coordinator (RC)

• Resource Managers (RMs)

2PC protocol
• voting phase: RC suggests a 

value to all RMs, which respond 
whether they agree

• commit phase: RC sends 
commit to all RMs if all RMs 
replied yes (or sends abort 
otherwise)

Efficiency
• 3n

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Yes / No

Yes / No
...

commit(v1) / abort

commit(v1) / abort
...

V
ot

in
g 

ph
as

e
C

om
m

it 
ph

as
e



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 19

Two phase commitTwo phase commit
Failure scenariosFailure scenarios

RM crashes before replying 
yes/no
(or after having replied no)
• RC aborts and notifies

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Yes

...

abort

abort
...

V
ot

in
g 

ph
as

e

X

C
om

m
it 

ph
as

e

X

TOUT



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 20

Two phase commitTwo phase commit
Failure scenariosFailure scenarios

RM crashes after having 
replied yes, before having 
seen the commit/abort
• RC commits/aborts

• other RMs successfully 
complete

Subsequent consensus 
instances need to restore 
membership
• Orthogonal problem

This is assuming fail-stop

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Ok

Ok
...

commit(v1)

commit(v1)
...

V
ot

in
g 

ph
as

e

X

C
om

m
it 

ph
as

e

X



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 21

FailuresFailures

Fail-stop
• Power, CPU, motherboard, NIC failure

• Host is shut down, repaired, wiped out and re-enrolled

Fail-recovery
• Transient network issue

‒ Network element crashes and is rebooted
‒ Network element fails, backup element takes its place, old 

primary gets replaced and repaired
‒ Network span cut/damaged, traffic is rerouted
‒ Software/configuration upgrade, element restarted

• Kernel panic, host is rebooted

• Host becomes temporarily slow due to uncommon overload 
(software updates, log catch-up, operators' actions, ...)



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 22

Two phase commitTwo phase commit
Failure scenariosFailure scenarios

RM comes back after having 
replied yes
(fail-recover)
• Commit/abort message is 

lost :(

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Ok

Ok
...

commit(v1)
...

V
ot

in
g 

ph
as

e

X

C
om

m
it 

ph
as

e

commit(v1)
X

v=?



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 23

Two phase commitTwo phase commit
Failure scenariosFailure scenarios

RM comes back after having 
replied yes
(fail-recover)
• Commit/abort message is 

lost :(

• Need for a catch-up 
mechanism, e.g.:

‒ RMs persist their Yes/No 
replies

‒ Crashed RM asks back to 
RC

• When is it safe to discard 
catch-up info?

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Ok

Ok
...

commit(v1)
...

V
ot

in
g 

ph
as

e

X

C
om

m
it 

ph
as

e

commit(v1)
X

catch-up

commit(v1)



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 24

Two phase commitTwo phase commit
Failure scenariosFailure scenarios

RC crashes before seeing 
all replies
• No commit/abort sent

• RMs abort on TOUT

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Yes / No

Yes / No
...

V
ot

in
g 

ph
as

e

X

TOUT TOUT



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 25

Two phase commitTwo phase commit
Failure scenariosFailure scenarios

RC crashes while sending out 
commits
• Problem: some RMs 

completed the protocol, 
others no!

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Ok

Ok
...

commit(v1)
...

V
ot

in
g 

ph
as

e
C

om
m

it 
ph

as
e

X TOUT



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 26

Two phase commitTwo phase commit
Failure scenariosFailure scenarios

RC crashes while sending out 
commits
• Problem: some RMs 

completed the protocol, 
others no!

• Another RC might take over, 
but needs to query RMs 
again about their votes

‒ When can RMs forget 
about a completed 
protocol instance?

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Ok

Ok
...

commit(v1)
...

V
ot

in
g 

ph
as

e
C

om
m

it 
ph

as
e

X

RC
2

RC
2

recover

v=v1, Ok

...
recover

...



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 27

Three phase commitThree phase commit

3PC phases
• Voting

• Prepare to commit (p2c)

• Commit

Key idea
• Each RM is able to take over 

as RC

Efficiency
• 5n

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Ok

Ok...

p2c(v1)
...

V
ot

in
g 

ph
as

e
p2

c 
ph

as
ep2c(v1)

Ok

Ok...

commit(v1)
...

commit(v1)

C
om

m
it 

ph
as

e



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 28

Three phase commitThree phase commit
Failure scenarioFailure scenario

RC crashes while sending out 
prepare-to-commit
• Any RM can take over as 

recovery node (RN)

• If RN had received p2c or commit 
before, it just sends out all p2c 
and commit to everybody

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Ok

Ok...

p2c(v1)
...

V
ot

in
g 

ph
as

e
p2

c 
ph

as
e

p2c(v1)

Ok

Ok...

commit(v1)
...

commit(v1)

C
om

m
it 

ph
as

e

RNRN
X



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 29

Three phase commitThree phase commit
Failure scenarioFailure scenario

RC crashes while sending out 
prepare-to-commit
• Any RM can take over as 

recovery node (RN)

• If RN had seen no p2c nor 
commit before, it queries all other 
RMs

‒ If any RM has seen a p2c or 
commit, RN completes the 
protocol sending out all 
missing p2c and commit

‒ Otherwise, RN either aborts or 
triggers another vote on v=v1

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Ok

Ok...

query
...

V
ot

in
g 

ph
as

e
p2

c 
ph

as
e

query

status

status...

RNRN
X

...

p2c(v1)



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 30

Three phase commitThree phase commit
Network partition problemNetwork partition problem

RCRC RM
k-1

RM
k-1RM

1
RM

1 ...

v=v1
v=v1...

Ok

Ok...

RM
k

RM
k

X

RM
n

RM
n...

p2c(v1)

p2c(v1)

RM
k+1

RM
k+1...

p2c(v1)

p2c(v1) TOUT

RNRN
Assume

RM
k+1

...RM
n
 failed

Assume
RM

1
...RM

k-1
 failed

Inconsistent
values on 

partition fix



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 31

Shortcomings of 2PC/3PCShortcomings of 2PC/3PC

2PC
• tolerates RMs that fail-stop
• 2PC cannot tolerate RC failures

3PC
• tolerates RC failures
• less efficient w.r.t. 2PC (5n vs 3n messages)

Both
• cannot tolerate nodes that fail-recover
• cannot tolerate network partitions
• all nodes need to answer: bad with large networks with 

frequent failures



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 32

CAP TheoremCAP Theorem

E. Brewer, “Towards Robust Distributed Systems,” PODC00

“You can only have only two out of
Consistency, Availability, Partition tolerance”



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 33

ACID vs BASEACID vs BASE
BASE

● Basically available
● Soft-state (durability is not always needed)
● Eventually consistent

ACID vs BASE and CAP
https://people.eecs.berkeley.edu/~brewer/PODC2000.pdf

https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

• BASE emphasizes availability over immediate consistency

More variations on non-strong consistency
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

• weak consistency => inconsistency window
• eventual consistency: weak consistency + we go to a consistent state if no further updates
• causal consistency: if A notifies B of an update, and B reads, it will see the udpate

• read-your-writes consistency: special case of causal consistency where A == B
• session consistency: read-your-writes only valid within the same session, if session falls, 

then no guarantee

• monotonic read consistency: once a newer value is observed, no old value can be seen
• monotonic write consistency: writes by the same process are serialized (or system 

impossible to use)

https://people.eecs.berkeley.edu/~brewer/PODC2000.pdf
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html


 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 34

More consistency modelsMore consistency models

Amazon Dynamo consistency [SOSP’07]
• writes for each key coordinated by pre-determined node
‒ if it is down, coordination taken over by other node(s)

• label each write with a (node, seq-n) pair (aka, version)
• multiple writes with same node are easily reconciled
‒ value with attached the highest version wins

a.k.a., syntactic reconciliation / conflict resolution

• multiple writes coordinated by different nodes are all kept 
and returned to the client on a get()
‒ the client will explicitly resolve the conflict with its next put()

a.k.a., (client-side) semantic reconciliation / conflict resolution



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 35

PAXOSPAXOS
(Lamport, 1989)(Lamport, 1989)



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 36

PAXOSPAXOS

Participants
• Proposers propose values
• Acceptors accept/reject proposed values
• Learners are notified of accepted values

Each node can play all of the roles at once
Possible failures
• Nodes may operate arbitrarily slow, may fail and stop, 

may fail and recover
• Messages can be arbitrarily delayed, duplicated and lost, 

but not corrupted



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 37

PAXOSPAXOS

Protocol
• A proposer acts as leader, it 

sends a unique and ever 
increasing sequence number 
(SN) to acceptors in a prepare 
request

PLPL A
2

A
2A

1
A

1

prepare(sn)

prepare(sn)

A
3

A
3

prepare(sn)



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 38

PAXOSPAXOS

Protocol
• A proposer acts as leader, it 

sends a unique and ever 
increasing sequence number 
(SN) to acceptors in a prepare 
request (no value sent now)

• Acceptors reply with a promise 
not to accept any value with 
lower SN, and include the 
previously accepted (SN, value) 
with the highest SN, if any

• Acceptors may ignore prepare 
requests with a lower SN than 
prepare requests they already 
replied to (but rejecting them 
would be better)

PLPL A
2

A
2A

1
A

1

prepare(sn)

prepare(sn)

promise(sn, [val', sn'])
promise(sn, [val', sn'])

A
3

A
3

prepare(sn)



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 39

PAXOSPAXOS

Protocol
• If a majority of acceptors 

replied not to have accepted a 
higher SN, the leader continues: 
it broadcasts an accept request, 
with the highest-SN accepted 
value got from acceptors if any, 
or a new value

PLPL A
2

A
2A

1
A

1

prepare(sn)

prepare(sn)

promise(sn, [val', sn'])
promise(sn, [val', sn'])

A
3

A
3

prepare(sn)

accept-req(val*, sn)
accept-req(val*, sn)

accept-req(val*, sn)



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 40

PAXOSPAXOS

Protocol
• If a majority of acceptors 

replied not to have accepted a 
higher SN, the leader continues: 
it broadcasts an accept request, 
with the highest-SN accepted 
value got from acceptors if any, 
or a new value

• Acceptors accept a proposal with 
a given SN iff they have not 
promised not to (iff they didn't 
reply to a promise with higher 
SN)

PLPL A
2

A
2A

1
A

1

prepare(sn)

prepare(sn)

promise(sn, [val', sn'])
promise(sn, [val', sn'])

A
3

A
3

prepare(sn)

accept-req(val*, sn)
accept-req(val*, sn)

accept-req(val*, sn)

accept(val*, sn)
accept(val*, sn)



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 41

PAXOSPAXOS

Protocol
• If a majority of acceptors 

replied not to have accepted a 
higher SN, the leader continues: 
it broadcasts an accept request, 
with the highest-SN accepted 
value got from acceptors if any, 
or a new value

• Acceptors accept a proposal with 
a given SN iff they have not 
promised not to (iff they didn't 
reply to a promise with higher 
SN)

• PL sends commit

PLPL A
2

A
2A

1
A

1

prepare(sn)

prepare(sn)

promise(sn, [val', sn'])
promise(sn, [val', sn'])

A
3

A
3

prepare(sn)

accept-req(val*, sn)
accept-req(val*, sn)

accept-req(val*, sn)

accept(val*, sn)
accept(val*, sn)

commit(val*, sn)
commit(val*, sn)

commit(val*, sn)



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 42

PAXOSPAXOS
No-return (decision) point:
• Majority of acceptors accepted

Learning accepted values
• #1 Acceptors, whenever accepting, 

reply to all learners

‒ inefficient

• #2 Acceptors notify only a 
distinguished learner, who notifies 
all learners

‒ What if the DL fails?

• #3 Acceptors notify a subset of 
distinguished learners

PLPL A
2

A
2A

1
A

1

prepare(sn)

prepare(sn)

promise(sn, [val', sn'])
promise(sn, [val', sn'])

A
3

A
3

prepare(sn)

accept-req(val*, sn)
accept-req(val*, sn)

accept-req(val*, sn)

accept(val*, sn)
accept(val*, sn)

commit(val*, sn)
commit(val*, sn)

commit(val*, sn)



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 43

PAXOSPAXOS

Notes
• How to change the sets of acceptors? Use PAXOS

• A full run of the protocol would need 5 disk syncs in the critical path 
(prepare, promise, accept-req, accept, commit)

• Chained/multi PAXOS for enhanced efficiency

‒ keep the same PL for as long as possible

‒ pack prepare msgs within accept of prior instances

‒ down to 1 disk sync (PL can sync after sending accept-req, acceptors 
need to sync before replying back with accept)

‒ batch multiple requests
• Egalitarian Paxos (Moraru et al., 2013):

‒ diff ops order across replicas unless precedence constraints

‒ workload spreads better across replicas



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 44

Thanks!Thanks!

Questions?Questions?



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 45

ReferencesReferences
References

• L. Lamport, “The part-time parliament,” TR 49, Digital SRC, 1989

• T. Chandra, R. Griesemer, J. Redstone, “Paxos made live – an engineering 
perspective,” ACM PODC, 2007


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

