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History, background & History, background & 
skillsskills

Let me introduce myself…
• 2000: MSc in Computer Engineering
‒ Thesis: PKCS#11 module for Netscape

• 2004: PhD in Computer Engineering
‒ Interoperability in open-source smart-card solutions

‒ Open-source MuscleCard framework → RedHat CoolKey

• 2004-2012: Researcher et al. at the ReTiS

‒ Adaptive scheduling for soft real-time systems

‒ Deadline-based scheduler for the Linux kernel for improved 
responsiveness of soft real-time, multimedia & virtualized services

• 2012-2014: MTS in Bell Labs: research on security and real-time 
performance of cloud applications (NFV/IMS)

• 2014-2015
‒ SDE in AWS DynamoDB: real-time performance and scalability of 

DynamoDB

• 2016-...
‒ Associate Professor at the ReTiS

‒ Joint UniPi/SSSA MSc degree on Embedded Computing Systems
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AWS DynamoDBAWS DynamoDB
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AWS DynamoDBAWS DynamoDB

What is DynamoDB
• Fully-managed 24/7 NoSQL DB service supporting
‒ Single-digit ms latency with guaranteed read/write throughput
‒ Elastic growth of tables up to arbitrary size

Data model
• A table is a collection of items, composed of attributes
• Primary key
‒ partition hash key: looked up by exact key (query)
‒ optional sort key: within each partition, items sorted by sort key

Other options
• Secondary indexes
• Support for structured JSON contents
• DynamoDB Streams
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AWS DynamoDBAWS DynamoDB

Performance model
• At table creation time, you specify RCUs and WCUs
‒ R/W beyond the provisioned capacity results in user errors

• Support for dynamic change of RCUs and WCUs
‒ Increasing a table capacity, as well as growing it with more and 

more data, will cause it to split into more and more partitions

Consistency model
• Consistent read of <4KB consumes a single RCU

• Eventually consistent read of <4KB consumes 0.5 RCU

• Once you get OK (200) from a write, you can safely sleep
‒ data is already stored durably on (more) SSD disks
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AWS DynamoDBAWS DynamoDB

Operations
• “System” composed of zillions of machines
• Geo-distributed: DynamoDB available in ~all AWS DCs
• Tables can grow arbitrarily in size => they continuously split into 

more and more partitions
• Failures continuously happen at all levels
‒ Hardware failures (host, power, CPU, memory, network, disk)
‒ Software failures (application, libraries, middleware, kernel)

– replication protocol provably correct in tolerating peers' failures

• Software upgrades continuously happen
‒ DynamoDB components, as well as thousands of dependencies within 

the AWS eco-system, need continuous upgrades

• Operators' mistakes do happen as well
• Performance and availability SLA under all said conditions
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FailuresFailures

Individual server failure examples
• server unreachable due to network issues
• server down due to unplanned restart (e.g., server crash / killed by 

OS / by an operator / kernel panic & machine reboot)
• down due to planned maintenance (software upgrade)
‒ rolling an upgrade in a region gracefully by sub-clusters takes several hours
‒ several services/components continuously patched/upgraded across 

several geographical regions

Whole data-center failure example
• power outage
• cooling failure
• network failure (fiber cut)
• natural disasters
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Operations tasksOperations tasks

Primary task/goal: keep service up & healthy 24/7
• up == availability
• healthy == satisfying functional & non-functional 

requirements
‒ implies resolve promptly issues reported by customers

Secondary tasks:
• root-cause analysis (RCA)
• feed information back to developers to reduce operations’ 

burden (mostly hit bugs need urgent fixes)
• enhance automation in operations handling

Escalation path for primary operators to engage 
secondary ones and experts when needed
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DevOps Life CycleDevOps Life Cycle

Bug fixingBug fixing New releasesNew releases

Run-time
issues

Run-time
issues

Operations
Root-cause

analysis
Root-cause

analysis

Software
development

- known bugs
- feature enhan.
- new features

- known bugs
- feature enhan.
- new features

Feature enh.Feature enh.

New featuresNew features

New systemsNew systems

- business object.
- market analyses
- customers req.
- financial constr.

- business object.
- market analyses
- customers req.
- financial constr.

DeploymentDeployment

Enable new f.Enable new f.

DC-wide opsDC-wide ops

Customer
support

Customer
support

MaintenanceMaintenance
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OperationsOperations

Idealistic view
• fully automated cloud system (infrastructure / service)

Realistic view
• a number of problems need operators’ intervention
• infrastructure is huge => significant operations load

Operations challenges for big cloud 
infrastructures
• reduction of operations (human) load
• continuous improvement of automation
‒ infrastructure expands as business grows
‒ operations workload grows with infrastructure size
‒ DC-wide operations (new DC / DC shutdown) need plenty of 

manual work

• handling of peak operations load (e.g., outages need 
plenty of manual work by many)

• develop/improve tools for root-cause analysis
• develop/improve tools for performance troubleshooting
• identify non-monitored data sets that are critical for the 

above steps
• keep monitoring overheads at sustainable levels
‒ monitoring everything with the finest granularity is just unfeasible
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Distributed ConsensusDistributed Consensus
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Distributed ConsensusDistributed Consensus

The problem
• A set of processes can propose 

values

• They need to agree on one of the 
proposed values

• They should learn what value has 
been chosen

Safety requirements
• Only one value among proposed 

ones can be chosen

• A process cannot learn a value 
that has not been chosen

v=?v=?

AA BB

CC DD

v=v1 v=
v2

v=
v3

v=v4
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Distributed ConsensusDistributed Consensus

Scenario: replicated SM
• SM replicas get messages 

causing state switches

• SM replicas agree on the 
sequence of transitions and 
SM state

Scenario: replicated DB
• DB replicas get requests

• DB replicas agree on 
committed transactions and 
DB contents

AA BB

CC DD

1: msg1
2: msg3
3: msg2

...

m
sg1

m
sg2

m
sg3
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Traditional ACID Traditional ACID 
transaction propertiestransaction properties

Atomicity
• All (commit) or nothing (abort)

Consistency
• Always consistent

Isolation
• w.r.t. parallelism, each transaction executes as if isolated; => 

serializability

Durability
• Results are preserved and durable despite failures
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Two phase commitTwo phase commit

2PC roles
• Resource Coordinator (RC)

• Resource Managers (RMs) RCRC RM
n

RM
nRM

1
RM

1 ...
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Two phase commitTwo phase commit

2PC roles
• Resource Coordinator (RC)

• Resource Managers (RMs)

2PC protocol
• voting phase: RC suggests a 

value to all RMs, which respond 
whether they agree

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Yes / No

Yes / No
...

V
ot

in
g 

ph
as

e
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Two phase commitTwo phase commit

2PC roles
• Resource Coordinator (RC)

• Resource Managers (RMs)

2PC protocol
• voting phase: RC suggests a 

value to all RMs, which respond 
whether they agree

• commit phase: RC sends 
commit to all RMs if all RMs 
replied yes (or sends abort 
otherwise)

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Yes / No

Yes / No
...

commit(v1) / abort

commit(v1) / abort
...

V
ot

in
g 

ph
as

e
C

om
m

it 
ph

as
e
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Two phase commitTwo phase commit

2PC roles
• Resource Coordinator (RC)

• Resource Managers (RMs)

2PC protocol
• voting phase: RC suggests a 

value to all RMs, which respond 
whether they agree

• commit phase: RC sends 
commit to all RMs if all RMs 
replied yes (or sends abort 
otherwise)

Efficiency
• 3n

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Yes / No

Yes / No
...

commit(v1) / abort

commit(v1) / abort
...

V
ot

in
g 

ph
as

e
C

om
m

it 
ph

as
e
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Two phase commitTwo phase commit
Failure scenariosFailure scenarios

RM crashes before replying 
yes/no
(or after having replied no)
• RC aborts and notifies

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Yes

...

abort

abort
...

V
ot

in
g 

ph
as

e

X

C
om

m
it 

ph
as

e

X

TOUT
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Two phase commitTwo phase commit
Failure scenariosFailure scenarios

RM crashes after having 
replied yes, before having 
seen the commit/abort
• RC commits/aborts

• other RMs successfully 
complete

Subsequent consensus 
instances need to restore 
membership
• Orthogonal problem

This is assuming fail-stop

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Ok

Ok
...

commit(v1)

commit(v1)
...

V
ot

in
g 

ph
as

e

X

C
om

m
it 

ph
as

e

X
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FailuresFailures

Fail-stop
• Power, CPU, motherboard, NIC failure

• Host is shut down, repaired, wiped out and re-enrolled

Fail-recovery
• Transient network issue

‒ Network element crashes and is rebooted
‒ Network element fails, backup element takes its place, old 

primary gets replaced and repaired
‒ Network span cut/damaged, traffic is rerouted
‒ Software/configuration upgrade, element restarted

• Kernel panic, host is rebooted

• Host becomes temporarily slow due to uncommon overload 
(software updates, log catch-up, operators' actions, ...)
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Two phase commitTwo phase commit
Failure scenariosFailure scenarios

RM comes back after having 
replied yes
(fail-recover)
• Commit/abort message is 

lost :(

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Ok

Ok
...

commit(v1)
...

V
ot

in
g 

ph
as

e

X

C
om

m
it 

ph
as

e

commit(v1)
X

v=?
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Two phase commitTwo phase commit
Failure scenariosFailure scenarios

RM comes back after having 
replied yes
(fail-recover)
• Commit/abort message is 

lost :(

• Need for a catch-up 
mechanism, e.g.:

‒ RMs persist their Yes/No 
replies

‒ Crashed RM asks back to 
RC

• When is it safe to discard 
catch-up info?

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Ok

Ok
...

commit(v1)
...

V
ot

in
g 

ph
as

e

X

C
om

m
it 

ph
as

e

commit(v1)
X

catch-up

commit(v1)
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Two phase commitTwo phase commit
Failure scenariosFailure scenarios

RC crashes before seeing 
all replies
• No commit/abort sent

• RMs abort on TOUT

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Yes / No

Yes / No
...

V
ot

in
g 

ph
as

e

X

TOUT TOUT
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Two phase commitTwo phase commit
Failure scenariosFailure scenarios

RC crashes while sending out 
commits
• Problem: some RMs 

completed the protocol, 
others no!

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Ok

Ok
...

commit(v1)
...

V
ot

in
g 

ph
as

e
C

om
m

it 
ph

as
e

X TOUT
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Two phase commitTwo phase commit
Failure scenariosFailure scenarios

RC crashes while sending out 
commits
• Problem: some RMs 

completed the protocol, 
others no!

• Another RC might take over, 
but needs to query RMs 
again about their votes

‒ When can RMs forget 
about a completed 
protocol instance?

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Ok

Ok
...

commit(v1)
...

V
ot

in
g 

ph
as

e
C

om
m

it 
ph

as
e

X

RC
2

RC
2

recover

v=v1, Ok

...
recover

...
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Three phase commitThree phase commit

3PC phases
• Voting

• Prepare to commit (p2c)

• Commit

Key idea
• Each RM is able to take over 

as RC

Efficiency
• 5n

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Ok

Ok...

p2c(v1)
...

V
ot

in
g 

ph
as

e
p2

c 
ph

as
ep2c(v1)

Ok

Ok...

commit(v1)
...

commit(v1)

C
om

m
it 

ph
as

e
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Three phase commitThree phase commit
Failure scenarioFailure scenario

RC crashes while sending out 
prepare-to-commit
• Any RM can take over as 

recovery node (RN)

• If RN had received p2c or commit 
before, it just sends out all p2c 
and commit to everybody

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Ok

Ok...

p2c(v1)
...

V
ot

in
g 

ph
as

e
p2

c 
ph

as
e

p2c(v1)

Ok

Ok...

commit(v1)
...

commit(v1)

C
om

m
it 

ph
as

e

RNRN
X
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Three phase commitThree phase commit
Failure scenarioFailure scenario

RC crashes while sending out 
prepare-to-commit
• Any RM can take over as 

recovery node (RN)

• If RN had seen no p2c nor 
commit before, it queries all other 
RMs

‒ If any RM has seen a p2c or 
commit, RN completes the 
protocol sending out all 
missing p2c and commit

‒ Otherwise, RN either aborts or 
triggers another vote on v=v1

RCRC RM
n

RM
nRM

1
RM

1 ...

v=v1

v=v1
...

Ok

Ok...

query
...

V
ot

in
g 

ph
as

e
p2

c 
ph

as
e

query

status

status...

RNRN
X

...

p2c(v1)
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Three phase commitThree phase commit
Network partition problemNetwork partition problem

RCRC RM
k-1

RM
k-1RM

1
RM

1 ...

v=v1
v=v1...

Ok

Ok...

RM
k

RM
k

X

RM
n

RM
n...

p2c(v1)

p2c(v1)

RM
k+1

RM
k+1...

p2c(v1)

p2c(v1) TOUT

RNRN
Assume

RM
k+1

...RM
n
 failed

Assume
RM

1
...RM

k-1
 failed

Inconsistent
values on 

partition fix
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Shortcomings of 2PC/3PCShortcomings of 2PC/3PC

2PC
• tolerates RMs that fail-stop
• 2PC cannot tolerate RC failures

3PC
• tolerates RC failures
• less efficient w.r.t. 2PC (5n vs 3n messages)

Both
• cannot tolerate nodes that fail-recover
• cannot tolerate network partitions
• all nodes need to answer: bad with large networks with 

frequent failures
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CAP TheoremCAP Theorem

E. Brewer, “Towards Robust Distributed Systems,” PODC00

“You can only have only two out of
Consistency, Availability, Partition tolerance”
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ACID vs BASEACID vs BASE
BASE

● Basically available
● Soft-state (durability is not always needed)
● Eventually consistent

ACID vs BASE and CAP
https://people.eecs.berkeley.edu/~brewer/PODC2000.pdf

https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

• BASE emphasizes availability over immediate consistency

More variations on non-strong consistency
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

• weak consistency => inconsistency window
• eventual consistency: weak consistency + we go to a consistent state if no further updates
• causal consistency: if A notifies B of an update, and B reads, it will see the udpate

• read-your-writes consistency: special case of causal consistency where A == B
• session consistency: read-your-writes only valid within the same session, if session falls, 

then no guarantee

• monotonic read consistency: once a newer value is observed, no old value can be seen
• monotonic write consistency: writes by the same process are serialized (or system 

impossible to use)

https://people.eecs.berkeley.edu/~brewer/PODC2000.pdf
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
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More consistency modelsMore consistency models

Amazon Dynamo consistency [SOSP’07]
• writes for each key coordinated by pre-determined node
‒ if it is down, coordination taken over by other node(s)

• label each write with a (node, seq-n) pair (aka, version)
• multiple writes with same node are easily reconciled
‒ value with attached the highest version wins

a.k.a., syntactic reconciliation / conflict resolution

• multiple writes coordinated by different nodes are all kept 
and returned to the client on a get()
‒ the client will explicitly resolve the conflict with its next put()

a.k.a., (client-side) semantic reconciliation / conflict resolution
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PAXOSPAXOS
(Lamport, 1989)(Lamport, 1989)
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PAXOSPAXOS

Participants
• Proposers propose values
• Acceptors accept/reject proposed values
• Learners are notified of accepted values

Each node can play all of the roles at once
Possible failures
• Nodes may operate arbitrarily slow, may fail and stop, 

may fail and recover
• Messages can be arbitrarily delayed, duplicated and lost, 

but not corrupted
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PAXOSPAXOS

Protocol
• A proposer acts as leader, it 

sends a unique and ever 
increasing sequence number 
(SN) to acceptors in a prepare 
request

PLPL A
2

A
2A

1
A

1

prepare(sn)

prepare(sn)

A
3

A
3

prepare(sn)
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PAXOSPAXOS

Protocol
• A proposer acts as leader, it 

sends a unique and ever 
increasing sequence number 
(SN) to acceptors in a prepare 
request (no value sent now)

• Acceptors reply with a promise 
not to accept any value with 
lower SN, and include the 
previously accepted (SN, value) 
with the highest SN, if any

• Acceptors may ignore prepare 
requests with a lower SN than 
prepare requests they already 
replied to (but rejecting them 
would be better)

PLPL A
2

A
2A

1
A

1

prepare(sn)

prepare(sn)

promise(sn, [val', sn'])
promise(sn, [val', sn'])

A
3

A
3

prepare(sn)
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PAXOSPAXOS

Protocol
• If a majority of acceptors 

replied not to have accepted a 
higher SN, the leader continues: 
it broadcasts an accept request, 
with the highest-SN accepted 
value got from acceptors if any, 
or a new value

PLPL A
2

A
2A

1
A

1

prepare(sn)

prepare(sn)

promise(sn, [val', sn'])
promise(sn, [val', sn'])

A
3

A
3

prepare(sn)

accept-req(val*, sn)
accept-req(val*, sn)

accept-req(val*, sn)



 

T. Cucinotta – Real-Time Systems Laboratory (ReTiS) – Scuola Superiore Sant’Anna 40

PAXOSPAXOS

Protocol
• If a majority of acceptors 

replied not to have accepted a 
higher SN, the leader continues: 
it broadcasts an accept request, 
with the highest-SN accepted 
value got from acceptors if any, 
or a new value

• Acceptors accept a proposal with 
a given SN iff they have not 
promised not to (iff they didn't 
reply to a promise with higher 
SN)

PLPL A
2

A
2A

1
A

1

prepare(sn)

prepare(sn)

promise(sn, [val', sn'])
promise(sn, [val', sn'])

A
3

A
3

prepare(sn)

accept-req(val*, sn)
accept-req(val*, sn)

accept-req(val*, sn)

accept(val*, sn)
accept(val*, sn)
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PAXOSPAXOS

Protocol
• If a majority of acceptors 

replied not to have accepted a 
higher SN, the leader continues: 
it broadcasts an accept request, 
with the highest-SN accepted 
value got from acceptors if any, 
or a new value

• Acceptors accept a proposal with 
a given SN iff they have not 
promised not to (iff they didn't 
reply to a promise with higher 
SN)

• PL sends commit

PLPL A
2

A
2A

1
A

1

prepare(sn)

prepare(sn)

promise(sn, [val', sn'])
promise(sn, [val', sn'])

A
3

A
3

prepare(sn)

accept-req(val*, sn)
accept-req(val*, sn)

accept-req(val*, sn)

accept(val*, sn)
accept(val*, sn)

commit(val*, sn)
commit(val*, sn)

commit(val*, sn)
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PAXOSPAXOS
No-return (decision) point:
• Majority of acceptors accepted

Learning accepted values
• #1 Acceptors, whenever accepting, 

reply to all learners

‒ inefficient

• #2 Acceptors notify only a 
distinguished learner, who notifies 
all learners

‒ What if the DL fails?

• #3 Acceptors notify a subset of 
distinguished learners

PLPL A
2

A
2A

1
A

1

prepare(sn)

prepare(sn)

promise(sn, [val', sn'])
promise(sn, [val', sn'])

A
3

A
3

prepare(sn)

accept-req(val*, sn)
accept-req(val*, sn)

accept-req(val*, sn)

accept(val*, sn)
accept(val*, sn)

commit(val*, sn)
commit(val*, sn)

commit(val*, sn)
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PAXOSPAXOS

Notes
• How to change the sets of acceptors? Use PAXOS

• A full run of the protocol would need 5 disk syncs in the critical path 
(prepare, promise, accept-req, accept, commit)

• Chained/multi PAXOS for enhanced efficiency

‒ keep the same PL for as long as possible

‒ pack prepare msgs within accept of prior instances

‒ down to 1 disk sync (PL can sync after sending accept-req, acceptors 
need to sync before replying back with accept)

‒ batch multiple requests
• Egalitarian Paxos (Moraru et al., 2013):

‒ diff ops order across replicas unless precedence constraints

‒ workload spreads better across replicas
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Thanks!Thanks!

Questions?Questions?
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