Brief Introduction to STL

Slides by G. Lipari (Scuola Superiore S. Anna, Pisa),
Yy p p

selected and modified by A. Bechini (Dept. Information Engineering,

Univ. of Pisa)

Introduction to STL

“Don’t reinvent the wheel:
use libraries”

- B. Stroustrup

)




Introduction

Here we introduce the basic object
of the C++ std library

You will need them when writing your programs
and exercise

Don’t panic:

you don’t need to understand

how these objects are implemented,

but only how they can be used.

A few words on namespaces

In C, there is the name-clashing problem

cannot declare two entities with the same name

One way to solve this problem in C++
is to use namespaces
A namespace is a collection of declarations

We can declare two entities with the same name
in different namespaces

All the standard library declarations
are inside namespace std;




Namespaces: Example

namespace sportgames {
const int howManyGames = 23;
class marathon { ... };
class soccer { ... };

Namespaces can also nest

namespace sportgames {
class marathon { ... };
namespace ballsportgames {
class soccer{ ... };

Using entities inside namespaces

There are two ways:
Using the scope resolution operator ::

the using namespace xx directive

std::string a; /I declaring an object of type
/I string from the std namespace

mylib::string b;  // declaring an object of type
/I string from the mylib namespace

using namespace std;  // from now on use std

string a; /I declaring an object of type
/I string from the std namespace

6




Namespace std and basic I/0O (I)

#include <iostream>
int main()

{
}

std::cout << “Hello world!”;

Basic I/O function are included with iostream
cout is the standard output stream

std::cout means that the cout object is contained in a
namespace called std.::

all the std library is contained in std

we can also use the using directive

Namespace std and basic 1/0 (II)

#include <iostream>
using namespace std;
int main()

{
}

operator << sends its right part to the stream to the left

cout << “Hello world!\n”;

it can send every kind of variable or constant:

int age = 30;

cout << “l am “ << age << “ years old\n”;




Introducing STL containers

sometimes we do not know
how many elements an array will contain

struct Entry {
string name;
int number;

2
Entry phone_book[1000];

void print_entry(int i) {
cout << phone_book[i].name << * * << phone_book[i].number << “\n”;

}

what if phone book overflows?

Containers: vector (I)

we can use the vector<Entry> container

struct Entry {
string name;
int number;

h
vector<Entry> phone_book(10);  //initially, only 10 elements
void print_entry(int i) {

cout << phone_book[i].name << * * << phone_book[i].number << “\n”;
}

void add_entry(const Entry &e) {
phone_book.push_back(e); /I after 10 elements, expands automatically

}




Containers: vector (II)

What is the push_back() function?

insert a new element at the end of the vector.
If there is not enough space, the vector is enlarged

How can we know the actual number of elements?
using the size() function

void add_entry(const Entry &e) {
phone_book.push_back(e); /I expands automatically
cout << “Now the numer of elements is “ << phone_book.size() << “\n”;

}

Containers: vector (I1I)

for efficiency reasons, operator [] is not checked for out-
of-range

however, we can use the function at() instead of []

/I this causes a segmentation fault if i is out of range
void print_entry(int i) {
cout << phone_book[i].name << ‘ * << phone_book[i].number << “\n”;

}

/I this throws an out_of range exception
void print_entry_with_exc(int i) {

cout << phone_book.at(i).name << * * << phone_book.at(i).number << “\n”;
}




First example

We will write a program that:
reads a file line by line
stores each line in a vector;

outputs the file upside/down (from the last line to the
first) into another file

Reading the command line

A program can read int main(int argc, char* argv[])

; {
the comrpand 1'1ne cout << “Num of args: * << arge << "
through its main for (int i =0; i<argc; ++i)
function cout << argv[i] << “\n”;
}
$> /args joe 5.0 12 india argc contains the number of args+ 1
Num of args: 5 . . .
Jargs argv[i] contains the i-th argument
joe argv[0] is always equal to the name of
?'20 the program
india




Now the code...

#include <iostream>
#include <fstream>
#include <string>
#include <vector>

using namespace std;
int main(int argc, char *argv[])

if (argc < 3) {
cout << "Usage: ";
cout << argv[0] << " <input file> <output_file>" << endl;
exit(-1);

}

ifstream in(argv[1]);

ofstream out(argv[2]);

Now the code...

vector<string> lines;

string str;
while (getline(in, str)) lines.push_back(str);

int n = lines.size();

cout << "The size of the input file is " << n << " lines\n";
for (inti=n;i> 0; --i)
out << lines][i-1] << endl;

cout << "Done!!" << endl;




Containers: map (I)

what if we want to search the phone book by name?

we have to perform a linear search

int get_number(const string &name)
{

for (int i=0; i<phone_book.size(); ++i)
if (phone_book[i].name == name) break;

if (i== phone_book.size()) {
cout << “not found!"\n”;
return O;

}

else return phone_book]i].number;

}

Containers: map (II)

Another (more optimized) way is to use map<string, int>

map<string, int> phone_book;

void add_entry(const string &nhame, int number)

{
}

phone_book[name] = number;

int get_number(const string &name)
{
int n = phone_book[name];
if (n == 0) cout << “not found\n”;

return n;

}




Containers: map (III)

You can think of map<> as an associative array

in our example, the index is a string,
the content is an integer

How map is implemented is not our business!
Usually implemented as hash tree, or red-black tree
linear search in a vector is O(n)
searching a map is O(log(n))

Very useful!!

19

Iterators

What if we want to print all elements of a map?

we need an iterator...

map<string, int> phone_book;

void print_all()
{

map<string, int>::iterator i;

for (i = phone_book.begin(); i I= phone_book.end(); ++i);
cout << “Name : “ << (*i).first << * *;
cout << “Number : “ << (*i).second << “\n”;

}

}

10



What the ?@#S3 is an iterator?

~ An iterator is an object for dealing with
a sequence of objects inside containers

~| You can think of it as a special pointer

phone_book.begin(); /I the beginning of the sequence
phone_book.end(); /I the end of the sequence
phone_book.begin() phone_book. end()
2
Iterators

~ Here is how the for() works:

void print_all() {
map<string, int>::iterator i;
for (i = phone_book.begin(); i = phone_book.end(); ++i);
cout << “Name : “ << (*i).first <<%
cout << “Number : “ << (*i).second << “\n”;

}

!

i\ i\ i\ i\ i\ i\
el Tow Tam e o]

>

K

phone_book.begin() phone_book. end()

11



A brief explanation of iterators

When you build a container, you need special
functions to access the members and traverse the
container
One solution could be to write special member
functions, like getFirst(), getNext(), and so on
This solution is inflexible, for many reasons
internal state for the container
you can traverse in one way only
generic functions, like sort, could not work in general

A better solution is to provide an additional std class,
called iterator, to access the members with a unified
interface

Iterator

An iterator is like a pointer to an object,

with restrictions
it can only point to element of a container
operator++() returns the next element in the container
operator®() returns the member itself

Every container defines its own iterator class,

the interfaces are the same

in this wayj, it is possible to write generic functions
that use only iterators

12



Iterators

There are iterators for all containers

vector, string, list, map, set, etc.

all support begin() and end()
Iterators are also used for generic algorithms
on containers

find, foreach, sort, etc.

Introducing generic algorithms

Let’s get back to the vector example

struct Entry {
string name;
int number;

h

vector<Entry> phone_book(10);  //initially, only 10 elements

what if we want to order the entries alphabetically ?

In the old C / C++ programming, we would take a good book of
algorithms (like “The art of computer programming” D. Knuth)
and write perhaps a shell-sort

With the standard library, this has already been done by someone
else and it is fast and optimized; all we have to do is to customize
the algorithm for our purposes.

26

13



sort()

We have to specify an ordering function
the algorithm needs to know ifa <b
we re-use operator < on strings

bool operator <(const Entry &a, const Entry &b)
{

}

return a.name < b.name;

Now we can use the sort algorithm:

‘template<c|ass Iter> void sort(lter first, Iter last); ‘

‘ sort(phone_book.begin(), phone_book.end()); ‘

The complete program

bool operator < (const Entry &a, const Entry &b) { return a.name < b.name;}

void add_entry(const string &n, int num) {
Entry tmp;
tmp.name = n; tmp.number = num;
phone_book.push_back(tmp);

1

int main() {
add_entry("Lipari Giuseppe", 1234);
add_entry("Ancilotti Paolo", 2345);
add_entry("Cecchetti Gabriele", 3456);
add_entry("Domenici Andrea", 4567);
add_entry("Di Natale Marco", 5678);
sort(phone_book.begin(), phone_book.end());

14



Generic algorithms

sort is an example of generic algorithm

to order objects, you don’t really need to know what
kind of objects they are, nor where they are contained

all you need is how they can be compared
(the < operator)
So, to customize the sort algorithm,
you have to specify what does it mean A <B

29

Generic algorithms

Another example: for_each()

void print_entry(const Entry &e)
{

}

int main(){

cout << e.name << “\t “ << e.number << “\n”;

for_each(phone_book.begin(),phone_book.end(),print_entry);

}

Try to change the container from vector<> to map<>.
The for_each does not need to be changed!

for_each() works as long as it has a couple of iterators :o

15



Another example

Suppose we want to print
only the first 5 elements of the sequence:

for_each(phone_book.begin(),
phone_book.begin()+min(3,phone_book.size()),
print_entry);

It is all that simple!

We will show in the next lessons how it is possible
to combine these objects to do almost everything.

16



