
1

Brief Introduction to STL

Slides by G. Lipari (Scuola Superiore S. Anna, Pisa),

selected and modified by A. Bechini (Dept. Information Engineering,
Univ. of Pisa)

2

Introduction to STL

“Don’t reinvent the wheel:
use libraries”

- B. Stroustrup

2

3

Introduction

Here we introduce the basic object
of the C++ std library
You will need them when writing your programs
and exercise
Don’t panic:
you don’t need to understand
how these objects are implemented,
but only how they can be used.

4

A few words on namespaces

In C, there is the name-clashing problem
– cannot declare two entities with the same name

One way to solve this problem in C++
is to use namespaces
– A namespace is a collection of declarations
– We can declare two entities with the same name

in different namespaces
– All the standard library declarations

are inside namespace std;

3

5

Namespaces: Example

Namespaces can also nest

namespace sportgames {
const int howManyGames = 23;
class marathon { … };
class soccer { … };

…
}

namespace sportgames {
class marathon { … };
namespace ballsportgames {

class soccer { … };
…
}

}

6

Using entities inside namespaces

There are two ways:
– Using the scope resolution operator ::
– the using namespace xx directive

std::string a; // declaring an object of type
// string from the std namespace

mylib::string b; // declaring an object of type
// string from the mylib namespace

using namespace std; // from now on use std

string a; // declaring an object of type
// string from the std namespace

4

7

Namespace std and basic I/O (I)

Basic I/O function are included with iostream
cout is the standard output stream
std::cout means that the cout object is contained in a
namespace called std::
all the std library is contained in std
we can also use the using directive

#include <iostream>
int main()
{

std::cout << “Hello world!”;
}

8

Namespace std and basic I/O (II)

operator << sends its right part to the stream to the left
it can send every kind of variable or constant:

#include <iostream>
using namespace std;
int main()
{

cout << “Hello world!\n”;
}

int age = 30;

cout << “I am “ << age << “ years old\n”;

5

9

Introducing STL containers

sometimes we do not know
how many elements an array will contain

struct Entry {
string name;
int number;

};

Entry phone_book[1000];

void print_entry(int i) {
cout << phone_book[i].name << ‘ ‘ << phone_book[i].number << “\n”;

}

what if phone_book overflows?

10

Containers: vector (I)

we can use the vector<Entry> container
struct Entry {

string name;
int number;

};

vector<Entry> phone_book(10); // initially, only 10 elements

void print_entry(int i) {
cout << phone_book[i].name << ‘ ‘ << phone_book[i].number << “\n”;

}

void add_entry(const Entry &e) {
phone_book.push_back(e); // after 10 elements, expands automatically

}

6

11

Containers: vector (II)

What is the push_back() function?
– insert a new element at the end of the vector.

If there is not enough space, the vector is enlarged

How can we know the actual number of elements?
– using the size() function

void add_entry(const Entry &e) {
phone_book.push_back(e); // expands automatically
cout << “Now the numer of elements is “ << phone_book.size() << “\n”;

}

12

Containers: vector (III)

for efficiency reasons, operator [] is not checked for out-
of-range
however, we can use the function at() instead of []

// this causes a segmentation fault if i is out of range
void print_entry(int i) {

cout << phone_book[i].name << ‘ ‘ << phone_book[i].number << “\n”;
}

// this throws an out_of_range exception
void print_entry_with_exc(int i) {

cout << phone_book.at(i).name << ‘ ‘ << phone_book.at(i).number << “\n”;
}

7

13

First example

We will write a program that:
– reads a file line by line
– stores each line in a vector;
– outputs the file upside/down (from the last line to the

first) into another file

14

Reading the command line

A program can read
the command line
through its main
function

int main(int argc, char* argv[])
{

cout << “Num of args: ” << argc << “\n”;
for (int i =0; i<argc; ++i)

cout << argv[i] << “\n”;
}

argc contains the number of args+ 1
argv[i] contains the i-th argument
argv[0] is always equal to the name of
the program

$> ./args joe 5.0 12 india
Num of args: 5
./args
joe
5.0
12
india

8

15

Now the code...
#include <iostream>
#include <fstream>
#include <string>
#include <vector>

using namespace std;

int main(int argc, char *argv[])
{

if (argc < 3) {
cout << "Usage: ";
cout << argv[0] << " <input file> <output_file>" << endl;
exit(-1);

}
ifstream in(argv[1]);
ofstream out(argv[2]);
…

16

Now the code...
…

vector<string> lines;

string str;
while (getline(in, str)) lines.push_back(str);

int n = lines.size();
cout << "The size of the input file is " << n << " lines\n";
for (int i=n; i > 0; --i)

out << lines[i-1] << endl;

cout << "Done!!" << endl;

}

9

17

Containers: map (I)

what if we want to search the phone_book by name?
we have to perform a linear search

int get_number(const string &name)
{

for (int i=0; i<phone_book.size(); ++i)
if (phone_book[i].name == name) break;

if (i== phone_book.size()) {
cout << “not found!!\n”;
return 0;

}
else return phone_book[i].number;

}

18

Containers: map (II)

Another (more optimized) way is to use map<string, int>

map<string, int> phone_book;

void add_entry(const string &name, int number)
{

phone_book[name] = number;
}

int get_number(const string &name)
{

int n = phone_book[name];
if (n == 0) cout << “not found!\n”;

return n;
}

10

19

Containers: map (III)

You can think of map<> as an associative array
– in our example, the index is a string,

the content is an integer

How map is implemented is not our business!
– Usually implemented as hash tree, or red-black tree
– linear search in a vector is O(n)
– searching a map is O(log(n))

Very useful!!

20

Iterators

What if we want to print all elements of a map?
we need an iterator...

map<string, int> phone_book;

void print_all()
{

map<string, int>::iterator i;

for (i = phone_book.begin(); i != phone_book.end(); ++i);
cout << “Name : “ << (*i).first << “ “;
cout << “Number : “ << (*i).second << “\n”;

}
}

11

21

What the ?@#$ is an iterator?

An iterator is an object for dealing with
a sequence of objects inside containers
You can think of it as a special pointer

phone_book.begin(); // the beginning of the sequence
phone_book.end(); // the end of the sequence

Abe
3456

Dan
5789

Chris
2109

Matt
4567

Zoe
2904

phone_book.begin() phone_book. end()

22

Iterators

Here is how the for() works:

Abe
3456

Dan
5789

Chris
2109

Matt
4567

Zoe
2904

phone_book.begin() phone_book. end()

i i i i i i

void print_all() {
map<string, int>::iterator i;
for (i = phone_book.begin(); i != phone_book.end(); ++i);

cout << “Name : “ << (*i).first << “ “;
cout << “Number : “ << (*i).second << “\n”;

}
}

12

23

A brief explanation of iterators
When you build a container, you need special
functions to access the members and traverse the
container
– One solution could be to write special member

functions, like getFirst(), getNext(), and so on
– This solution is inflexible, for many reasons

• internal state for the container
• you can traverse in one way only
• generic functions, like sort, could not work in general

– A better solution is to provide an additional std class,
called iterator, to access the members with a unified
interface

24

Iterator

An iterator is like a pointer to an object,
with restrictions
– it can only point to element of a container
– operator++() returns the next element in the container
– operator*() returns the member itself

Every container defines its own iterator class,
the interfaces are the same
– in this way, it is possible to write generic functions

that use only iterators

13

25

Iterators

There are iterators for all containers
– vector, string, list, map, set, etc.
– all support begin() and end()

Iterators are also used for generic algorithms
on containers
– find, foreach, sort, etc.

26

Introducing generic algorithms

Let’s get back to the vector example
struct Entry {

string name;
int number;

};

vector<Entry> phone_book(10); // initially, only 10 elements

what if we want to order the entries alphabetically ?
– In the old C / C++ programming, we would take a good book of

algorithms (like “The art of computer programming” D. Knuth)
and write perhaps a shell-sort

– With the standard library, this has already been done by someone
else and it is fast and optimized; all we have to do is to customize
the algorithm for our purposes.

14

27

sort()
We have to specify an ordering function
– the algorithm needs to know if a < b
– we re-use operator < on strings

bool operator <(const Entry &a, const Entry &b)
{

return a.name < b.name;
}

Now we can use the sort algorithm:

template<class Iter> void sort(Iter first, Iter last);

sort(phone_book.begin(), phone_book.end());

28

The complete program
bool operator < (const Entry &a, const Entry &b) { return a.name < b.name;}

void add_entry(const string &n, int num) {
Entry tmp;
tmp.name = n; tmp.number = num;
phone_book.push_back(tmp);

}

int main() {
add_entry("Lipari Giuseppe", 1234);
add_entry("Ancilotti Paolo", 2345);
add_entry("Cecchetti Gabriele", 3456);
add_entry("Domenici Andrea", 4567);
add_entry("Di Natale Marco", 5678);
sort(phone_book.begin(), phone_book.end());

}

15

29

Generic algorithms

sort is an example of generic algorithm
– to order objects, you don’t really need to know what

kind of objects they are, nor where they are contained
– all you need is how they can be compared
– (the < operator)

So, to customize the sort algorithm,
you have to specify what does it mean A < B
You will learn later how to write a generic
algorithm, that does not rely on the type of objects

30

Generic algorithms

Another example: for_each()

void print_entry(const Entry &e)
{

cout << e.name << “ \t “ << e.number << “\n”;
}

int main(){
…
for_each(phone_book.begin(),phone_book.end(),print_entry);

}

Try to change the container from vector<> to map<>.
The for_each does not need to be changed!
for_each() works as long as it has a couple of iterators

16

31

Another example

Suppose we want to print
only the first 5 elements of the sequence:

for_each(phone_book.begin(),
phone_book.begin()+min(3,phone_book.size()),
print_entry);

It is all that simple!
We will show in the next lessons how it is possible
to combine these objects to do almost everything.

