Network Working Group

Request for Comments: 705

NIC# 33644

 FRONT - END PROTOCOL

 B6700 VERSION

 2 September 1975

This is a working document which has been developed as the specification

and guideline for design of a Burroughs B6700 attachment to an ARPA-Style

network.

The approach is to utilize a front-end processor with a new protocol for

network operation. That protocol, described herein, has been built upon

the concepts expressed by M.A. Padlipsky, et al, in NIC# 31117, RFC# 647.

This proposed, site-specific, FEP implementation is the work of Gerald

Bailey and Keith McCloghrie of NSA and of David Grothe of ACC. It has

already sustained some corrections provided by MAP. It will be helpful

if interested networkers will review and provide comments to us.

Comments to BRYAN@ISI.

Roland Bryan - ACC

1

Network Working Group

Request for Comments: 705

Front-End Protocol: B6700 Version

 WORKING DOCUMENT

 FRONT-END PROTOCOL

 PREFACE

This document describes the protocol to be used for connecting a general-

purpose computer system (host) to an ARPANET-like network via a "front-end"

computer. The main body of the document is aimed at a reader who is not

conversant with all the details of network protocols. However, a paragraph

marked with [n], refers a reader familiar with network protocols to the

n-th item of Appendix A which will amplify that particular paragraph.

Further information on the network protocols referred to in this document

can be obtained from the Network Information Center.

Appendix B contains diagrams showing the transitions between the different

connection states. Appendices C and D give the implementation details of

this protocol in the Front-End and the Hosts.

This protocol is predicated upon the assumption that for each host, a line

protocol, at a lower level, will be established between the device-driver

modules in the Host and the Front-End, and that this line protocol provides

Front-End Protocol with error-free transmissions.

 INTRODUCTION

2

A host computer may be connected to a network for a variety of reasons.

Network connection may be an attempt to expand the usefulness of the

Host to the community of users which it serves by making network resources

available to them. Conversely, the services which the Host provides may

be made available to a larger community of users, with the network providing

the method of access to those services.

In order for members of a network community to communicate in an intelligent

way, there must exist a set of protocols. The implementation of these

protocols in a host computer is typically called the Network Control Program

(NCP). The size and complexity of the NCP is proportional to the number and

complexity of protocols which it implements. For an ARPANET like network,

both the number and complexity are substantial.

 WORKING DOCUMENT

 1

RFC 705

Front-End Protocol

 WORKING DOCUMENT

A host which directly connects into the network must assume the responsibility

for implementing this set of protocols. That is the "price of admission"

to become a network host. It is not necessary to implement every protocol

and every option in every host, but even in the simplest case -- implementation

of an NCP is not a small task. The intrusion into the normal operating

environment of the host is also not small.

An alternative method for network connection is to connect the host to some

intermediate processor, and in turn, directly connect that processor to the

network. This approach is called "Front-Ending." There are many arguments

which may be posed to justify a host connection to a network through a front-

end processor. The most obvious being that the responsibility for

implementation of the network protocols (the NCP) can be delegated to the

front-end (FE), thereby reducing the impact on the host.

The purpose of this document is not to justify Front-Ending as a philosophy,

but rather, to introduce a protocol for communications between a host and

a front-end processor which is providing it network access. The Front End

Protocol (FEP) is intended to permit the host to make use of the network

through existing protocols, without requiring that it be cognizant of the

complexities and implementation detail inherent in their execution.

The FEP is sufficiently general to permit its implementation in the host

to be in terms of the function the host is performing, or the services

which it is providing. Of primary consideration in specification of FEP

was that it must provide the host with a sufficiently robust command

repertoire to perform its network tasks, while buffering it from the

details of network protocols.

 CONCEPTS

3

Introduction

3a

Before a detailed description of the command structures is undertaken it

seems appropriate to introduce several of the concepts upon which the FEP

is predicated.

The following section serves to briefly describe the FEP commands, and to

elaborate on the concepts of addressing and types of connections provided.

 WORKING DOCUMENT

 2

RFC 705

Front-End Protocol

 WORKING DOCUMENT

Commands (General)

3b

1. BEGIN Command

This command is sent from the host to the front-end processor. Its function

is to direct the establishment of one or more network connections. The type

and number of connections is specified in the BEGIN command string.

2. LISTEN Command

Through this command the host indicates its willingness to accept requests

for connection arriving from other hosts. It directs the front-end processor

to LISTEN for any such connection requests. The number and type of

connections are specified in the command string.

3. RESPONSE Command

The front-end processor uses the RESPONSE command to indicate to the host that

a particular path specified in a BEGIN or LISTEN command is now open or that

the open attempt failed.

4. MESSAGE Command

Message text passing between the host and its front-end processor is sent in

this command string. The MESSAGE command is bi-directional, and is the same

for host or front-end.

5. INTERRUPT Command

The INTERRUPT command is sent by either the host of FE. Its most common use is

to convey that the user wishes to terminate what he is doing - i.e., he has

depressed the Control-C, ATTN, or INT key.

6. END Command

One or more connections may be closed by either the FE or the host issuing

this command. The connection(s) which are affected by the action of the END

are specified in the command string.

7. REPLY Command

This command is required to be sent by both the host and FE to acknowledge

receipt of all command types (except REPLY). The success or failure of the

command being acknowledged is conveyed in the REPLY command string.

 WORKING DOCUMENT

 3

RFC 705

Front-End Protocol

 WORKING DOCUMENT

Connections

 3c

In order to engage in a meaningful conversation, the parties involved must

be connected. A network connection is defined by the ARPA Host-Host Protocol

document (Nic #8246) as follows : "A connection couples two processes so

that output from one process is input to the other. Connections are defined

to be unidirectional, so two connections are necessary if a pair of processes

are to converse in both directions." The components of a connection, the

sockets, are defined: "... a socket forms the reference for one end of a

connection, and a connection is fully specified by a pair of sockets. A

socket is identified by a Host number and a 32-bit socket number. The same

number in different Hosts represents different sockets."

The existing network protocols incorporate prescribed strategies for

selecting socket assignments, pairing sockets to form connections, and in

the number of connections required to implement the protocol.

Conversations, in most cases, are bi-directional. Thus to simplify the

Host's procedures in these cases, FEP permits duplex connections on which

the Host can both send and receive. Send only and Receive only connections

are also available for those situations where communication is one-way.

Thus, FEP provides the flexibility to reduce complexity in the Host, in

addition to accommodating existing protocols and allowing for the

development of new protocols.

Addressing

3d

Conversations in FEP are uniquely identified at initiation by some combination

of Host address, Index number, Path number and Socket assignment. The Host

address and Socket assignment are required to form the connection(s); there-

after the Index and Path are sufficient to identify the conversation.

Host Address

If, through the BEGIN command, the local Host explicitly directs the creation

of network connection(s), it must specify the address of the foreign host to

which it desires communication. If the local host indicates a willingness to

communicate, through the LISTEN command, the Front-End processor will supply

the address of the connecting foreign host(s) in its RESPONSE command(s).

 WORKING DOCUMENT

 4

RFC 705

Front-End Protocol

 WORKING DOCUMENT

Socket

A socket is either a send socket or a receive socket. This property is

called the socket's gender. The sockets at either end of a network

connection must be of opposite gender. As previously defined a socket

forms the reference for one end of a network connection. To the extent

possible, the FEP shields the Host from the responsibility of assigning

sockets for individual conversations. However, because the

socket is a fundamental part of the addressing mechanism of the network,

the Host may need to be aware of socket assignments when establishing

connections.

It is through a "well-advertised" socket that a host provides services

to other members of the network community. The Initial Connection

Protocol (ICP) [1] is used to first connect to the well-advertised socket

in order to exchange the number of a presently unused socket which is then

used for the connections required so that the well-advertised socket can

be freed for others attempting to connect.

When establishing a conversation (with a BEGIN or LISTEN command) the

Host indicates in the value of the CONN-TYPE field whether the socket

specified is to be employed directly, or to be used as an initial

connection socket.

Index/Path Addressing

3e

Indexes are values assigned by the local Host to identify network con-

versations. When conversations are established (with the BEGIN or LISTEN

commands) the Host must specify an index value. This value will be

associated with the resultant conversations for their duration.

It is often necessary to affiliate conversations [2]. To accommodate this,

data paths are defined such that each index has one or more path(s)

associated with it (a path can not exist except as a subordinate to an

index) and all network communication is transmitted on some path.

The maximum number of indexes which may be in use at any one time, and the

maximum number of paths within one index are installation parameters.

Index 0 is reserved for controlling other indexes, and logically represent the

"pipe" through which all other indexes "flow."

 WORKING DOCUMENT

 5

RFC 705

Front-End Protocol

 WORKING DOCUMENT

Addresses in FEP command strings are conveyed by the pair of fields "INDEX"

and "PATH." In commands which cause new indexes to be opened, or new data

paths to be added to an existing index (BEGIN or LISTEN), the PATH field

indicates the first path to be acted upon by this command. For those

commands which do not create new paths or indexes, if PATH is 0, then all

paths associated with this INDEX are addressed; if PATH is non-zero, only the

specific path within the specified INDEX is addressed.

Path Types

3f

A path can be one of three types:

a. DUPLEX - both the Host and the FE can issue MESSAGE commands

 on the path.

b. SEND - only the Host can issue MESSAGE commands on the path.

c. RECEIVE - only the FE can issue MESSAGE commands on the path.

The paths within an index may be a mixture of path types but one BEGIN/

LISTEN must be used for each contiguous set of the same type.

An FEP path is analogous to a network connection with the following exception.

Network connections are always simplex. This is true for paths of type SEND

or RECEIVE. However, a DUPLEX path is formed by the FE connecting two local

sockets to two foreign sockets. This is a "duplex connection" which is

composed of two network (simplex) connections.

Modes of Establishing a Path

3g

One or more paths are established by the action of a single BEGIN or LISTEN

command, with the mode specified in the CONN-TYPE field of the command.

Each of the path types is established in one of two modes - directly or via

ICP. The gender of the path (its ability to receive or send or both) is not

affected by the mode.

When any of the path types is specified with the ICP mode, the socket value

in the SOCKET field is used as the "well-advertised" socket and an actual

working socket will be exchanged according to the Initial Connection Protocol.

When the direct mode is indicated, the specified socket is used as the working

socket.

 WORKING DOCUMENT

 6

RFC 705

Front-End Protocol

 WORKING DOCUMENT

In either mode, when multiple paths are indicated, the next higher socket

number values of the appropriate gender are selected for each path. [3]

Translation

3h

When the Host sets up a path(s) (with a BEGIN or LISTEN command) it identifies

what type of translation or data-mapping it requires the FE to perform on all

data transmitted on this path(s). This is specified by two values - one

giving the format of the data transmitted between the FE and the network,

the other giving the format of the data between the Host and the FE. [4]

Flow Control

3i

All commands (except REPLYs) must be REPLYED to by the receiver. The sender

is blocked from sending more commands on the same path until a REPLY has been

received. The REPLY command serves two functions: it indicates the

success/failure of the last transmission on the path, and it also indicates

a willingness of the receiver to accept more data on that path. Receipt of

any valid REPLY on an open path is sufficient to unblock it for END or

INTERRUPT commands. Thus a receiver who will not (or can not) accept more

data (MESSAGE commands) on a given path need not block the sender from

ENDing the path if he desires. An indication of "READY" in the reply serves

to unblock the path for MESSAGE commands also.

In the normal case, the REPLY performs both functions concurrently. However,

when the receiver is not ready to accept more data, he can REPLY indicating

only success/failure of the last command which should be sufficient to

allow the sender to free the transmission buffer, requeue the command for

retransmission if necessary, etc. and wait for another REPLY command

announcing the receiver's ability to accept more data.

Exceptional Conditions

3j

When a command is received and can not be executed, the REPLY command is used

to notify the sender of the command. To do this, the bits of CODE field of

the REPLY are set to show the CATEGORY of the error and its TYPE within that

category (see Section 3h).

 WORKING DOCUMENT

 7

RFC 705

Front-End Protocol

 WORKING DOCUMENT

 COMMANDS

4

Introduction

4a

All communications between the Host and the FE is performed by means of

commands. The commands are given names for documentation purposes but are

distinguished by the binary value of the first field of the command string.

Command strings will be padded with zeros up to the next multiple of an

installation defined parameter. (This value will be dependent on the

capabilities of the hardware interface between the Host and the FE.)

Field lengths within a command string are specified as some number of bits.

These information bits will be right-justified within the least number of

bytes needed to hold them. The size of a byte will be an installation

parameter which will normally be 8 bits but other values will be accommodated

as necessary.

The values and meanings of the CODE field of the REPLY command are given for

each command within the following descriptions:

1: BEGIN

4b

Format

BEGIN INDEX PATH HOST SOCKET TRANS-TYPE CONN-TYPE NPATHS

Use

This command is sent only from the Host to the FE. Its function is to direct

the FE to establish one or more logical connections (paths) on the specified

index between the Host and the FE.

Its use has three different modes (depending on the value of the PATH field) :

mode (a) - to set up a new index and to direct the FE to attempt

to establish network connections for the one or more paths

specified within this index.

 WORKING DOCUMENTS

 8

RFC 705

Front-End Protocol

 WORKING DOCUMENT

mode (b) - to attempt to establish network connections for an

existing (but at present closed) path within the already set-up

index.

Mode (c) - to attempt to establish network connections for

one or more new paths within the already set-up index.

Parameters

a) BEGIN is an 8-bit field with the value 1.

b) INDEX is a 16-bit field, specifying the index. Note that

 the value 0 is reserved for special use (see Section 4).

c) PATH is an 8-bit field, specifying the path(s) which are

 to be established. Its value identifies the mode of the

 BEGIN (see above) :

mode (a) - its value must be 1.

mode (b) - its value must be that of the path to be

"re-opened."

mode (c) - its value must be exactly one greater than

the current number of paths defined within this index.

d) HOST is a 32-bit field specifying the foreign host with

 which connections are to be established.

e) SOCKET is a 32-bit field, specifying the first or only

 socket at the foreign host to which connections are to

 be made.

f) TRANS-TYPE is a 16-bit field which directs the FE to

 perform this type of translation on all data (i.e. TEXT

 in the MESSAGE command string) sent on every path being

 established by this command. The first 8 bits specify

 the format of the data on the network side; the second

 8 bits specify the format of the data on the Host side.

 The values assigned to the particular formats (eq. ASCII,

 EBCDIC etc.) are installation parameters; however, the

 WORKING DOCUMENT

 9

RFC 705

Front-End Protocol

 WORKING DOCUMENT

 value 0 will always mean "bit string" and thus if either

 of the 8-bit sub-fields contains 0, then no mapping will

 be performed.

 g) CONN-TYPE is an 16-bit field, specifying the type and mode

 of connection(s) to be established for the specified path(s).

 Its value informs the FE how to associate sockets with

 indexes/paths (see Sections 2f and 2g).

Value

 Type

 Mode

 7

Duplex

via ICP

 6

Duplex

direct

 5

Receive

via ICP

 4

Receive

direct

 3

Send

via ICP

 2

Send

direct

 h) NPATHS is an 8-bit field, specifying the number of paths which

this command directs the FE to attempt to establish connections

for. If the BEGIN is of mode (b) then its value must be 1.

Otherwise the sum of its value and the value of the PATH field

is the new current number of paths plus one.

Error CODES in REPLY

Category Type

Meaning

 3
 1

PATH invalid for new index

 3
 2

PATH invalid for old index

 3
 3

PATH already open

 3
 4

HOST unknown

 3
 5
TRANSLATION-TYPE invalid

 3
 6

CONNECTION-TYPE invalid

 3
 7

NPATHS invalid for old path on old index

 3
 8

Specified socket inconsistent with CONN-TYPE

 3
 9

INDEX invalid, not ready for business

 4
 1

No new connections - FE full

 4
 2

No new connections - closing down soon

 WORKING DOCUMENT

 10

RFC 705

Front-End Protocol

 WORKING DOCUMENT

2: LISTEN

4c

Format

LISTEN INDEX PATH HOST SOCKET TRANS-TYPE CONN-TYPE NPATHS

Use

This command is sent only from the Host to the FE.

Its function is to direct the FE to "listen," i.e., to hold the specified paths

pending until such time as a request for connection (RFC) is received from the

network to the specified local socket. then to set up connections and to

respond with a RESPONSE command for each path.

Its use has three different modes (depending on the value of the PATH field) :

mode (a) - to set up a new index and to listen on the specified local

socket in order to establish connections for the specified paths.

mode (b) - to listen on the specified socket in order to establish

connections for the specified, existing (but at present closed)

path within the already set-up index.

mode (c) - to listen on the specified socket in order to establish

connections for the specified new path(s) within the already set-up

index.

By use of the HOST parameter, the FE can be directed to accept RFCs from any

host or only from the specified host.

Parameters

a) LISTEN is an 8-bit field with value 2.

b) INDEX is a 16-bit field specifying the index.

c) PATH is an 8-bit field specifying the first of the one or more

 paths which are to be held pending receipt of a RFC. Its

 value identifies the mode of the LISTEN (see above) :

 WORKING DOCUMENT

 11

RFC 705

Front-End Protocol

 WORKING DOCUMENT

mode (a) - its value must be 1.

mode (b) - its value must be that of the existing path.

mode (c) - its value must be exactly one greater than

the current number of paths within this index.

d) HOST is a 32-bit field specifying the host from which RFCs

 are to be accepted; a value of 0 implies from any host.

e) SOCKET is a 32-bit field specifying the local socket on which

 the FE is to listen for RFCs.

f) TRANS-TYPE is a 16-bit field specifying the type of translation

 the FE is to perform on all data sent on every path established

 as a result of this command. Its values are the same as in the

 BEGIN command.

g) CONN-TYPE is an 16-bit field specifying the type and mode of the

 connection(s) to be established for the specified path(s) when

 an RFC is received. Its values are the same as in the BEGIN

 command.

h) NPATHS is an 8-bit field specifying the number of paths which

 this command associates with the specified index and which are

 to be established. If the LISTEN is of mode (b) then its value

 must be 1. Otherwise the sum of its value and the value of the

 PATH field is the new current number of paths plus one, within

 this index. Thus its value is the number of extra RFCs for

 which the FE is listening on this socket.

Error CODEs in REPLY

Category Type

Meaning

 3

1
PATH invalid for new index

 3

2
PATH invalid for old index

 3

3
PATH already open

 3

4
HOST unknown

 3
 5
TRANSLATION-TYPE invalid

 WORKING DOCUMENT

 12

RFC 705

Front-End Protocol

 WORKING DOCUMENT

 3

6
CONNECTION-TYPE INVALID

 3

7
NPATHS invalid for old path on old index

 3

8
Specified socket inconsistent with CONN-TYPE

 3

9
INDEX invalid, not ready for business

 3
 10
Socket already in use.

 4

1
No new listens - FE full

 4

2
No new listens - closing down soon

3: RESPONSE

4d

Format

RESPONSE INDEX PATH CODE HOST SOCKET

Use

This command is sent only from the FE to the Host - once per path specified in

a BEGIN or a LISTEN command.

For paths specified in a BEGIN, it is sent to indicate the success or failure

of the connection attempt. For paths specified in a LISTEN, it is sent at

the time when the FE has received a matching RFC and has established the

connection.

The HOST and SOCKET parameters are purely informational which the Host can

ignore if it so desires. Their contents are only guaranteed if the connection

attempt succeeded.

Parameters

a) RESPONSE is an 8-bit field with value 3.

b) INDEX is a 16-bit field specifying the index.

c) PATH is an 8-bit field specifying the particular path.

d) CODE is a 16-bit field indicating the outcome of the

 connection attempt:

 WORKING DOCUMENT

 13

RFC 705

Front-End Protocol

 WORKING DOCUMENT

Value

Meaning

 0

Path successfully established.

 1

Local IMP dead.

 2

Foreign IMP inaccessible.

 3

Foreign Host dead.

 4

Foreign Host not responding.

 5

Connection refused.

e) HOST is a 32-bit field specifying the foreign host to which the

 connection has been made.

f) SOCKET is a 32-bit field specifying the socket at the foreign

 host. If the connection type is simplex, then it is the only

 foreign socket for this path; if duplex, then it is the lower

 of the two foreign sockets.

Error CODES in REPLY

Category
Type
 Meaning

 3

 11
INDEX unknown

 3

 12
PATH unknown

 3

 13
CODE invalid

4: MESSAGE

4e

Format

MESSAGE INDEX PATH COUNT PAD TEXT

Use

This command is sent by either the Host or the FE to transmit data on the

specified path and index.

Parameters

a) MESSAGE is an 8-bit field with value 4.

b) INDEX is a 16-bit field specifying the index.

 WORKING DOCUMENT

 14

RFC 705

Front-End Protocol

 WORKING DOCUMENT

c) PATH is an 8-bit field specifying the path. Note that the value

 0 is used in the broadcast option (see Section 3j).

d) COUNT is a 16-bit field specifying the number of bits of data

 in the TEXT field.

e) PAD is an n-bit field, where n is an installation parameter.

 It contains only padding (in the present protocol specification)

 and can be used to enable the host to have the TEXT field start

 on a convenient boundary.

f) TEXT is a field containing COUNT bits of data being transmitted

 on this path.

Error CODES in REPLY

Category
Type

Meaning

 2

 1
This option not implemented

 3

 12
PATH unknown

 3

 14
No connection opened in this direction

 3

 15
PATH blocked at this time, resent later

 3

 16
PATH suspended at this time, resent later

 3

 17
PATH closed

 3

 17
COUNT too large

 4

 3
Error in transmitting data, resend command

 4

 4
Data lost, resent command.

5: INTERRUPT

4f

Format

INTERRUPT INDEX PATH CODE

Use

This command is sent by either the Host or the FE.

Its most common use is to pass the information that a terminal user has

pressed his INT (or ATTN or Control-C) key, thereby requesting his

applications program to quit what it is doing for him.[5]

 WORKING DOCUMENT

 15

RFC 705

Front-End Protocol

 WORKING DOCUMENT

Parameters

a) INTERRUPT is a 8-bit field with value 5.

b) INDEX is a 16-bit field specifying the index.

c) PATH is an 8-bit field specifying the path on which the

 INTERRUPT is transmitted. Note that the value 0 is used in

 the broadcast option (see Section 3j).

d) CODE is a 16-bit field. It has no defined meanings as yet

 and should contain 0.

Error CODES in REPLY

Category
Type

Meaning

 2

 1
This option not implemented

 3

 11
INDEX unknown

 3

 12
PATH unknown

 3

 14
No connection opened in this direction

 3

 15 PATH blocked at this time, resend later

 3

 17
PATH closed.

6: END

 4g

Format

END INDEX PATH CODE

Use

This command is sent by either the Host or the FE, to terminate a connection.

If PATH is 0, then the index and all its paths are terminated, otherwise just

the specified path of the index is terminated.

Parameters

a) END is an 8-bit field with value 6.

b) INDEX is a 16-bit field specifying the index.

 WORKING PARAMETER

 16

RFC 705

Front-End Protocol

 WORKING DOCUMENT

c) PATH is an 8-bit field containing the path to be closed, or 0 if

 the whole index is to be closed.

d) CODE is a 16-bit field indicating the reason for the closure:

Value
 Meaning

 0
Normal close

 1
Retries exhausted

 2
Foreign Host failure

 3
Foreign IMP failure

 4
Network failure

 5
Local IMP failure.

 The "Retries exhausted" code indicates that the FE has been

 retrying a transmission to the foreign host without success.

Error CODES in REPLY

Category
Type

Meaning

 3

 11
INDEX unknown

 3

 12
PATH unknown

 3

 13
CODE unknown

 3

 15
PATH blocked at this time, resend later

 3

 17
PATH closed.

7: REPLY

 4h

Format

REPLY INDEX PATH CODE

Use

This command is sent by both the Host and the FE to acknowledge receipt of

every other type of command (including those on index 0, see Section 4) and/or

to unblock that particular direction of an opened path for the transmission

of another command.

Note that the INDEX and PATH fields contain exactly the same as those of the

command being replied to.

 WORKING DOCUMENT

 17

RFC 705

Front-End Protocol

 WORKING DOCUMENT

Parameters

a) REPLY is an 8-bit field with value 7.

b) INDEX is a 16-bit field specifying the index.

c) PATH is a 8-bit field specifying the path.

d) CODE is a 16-bit field indicating the success/failure of the

 command being REPLYed to, and the sender's readiness for more

 commands on the same path. It is divided into four subfields -

 STATUS, COMMAND, CATEGORY, and TYPE.

1) STATUS is 4 bits wide

 bit 0 (right-most) - READY

 bit 1
 - NOT-READY

 bit 2 - ACK

 bit 3
 - NAK

 ACK=1 indicates that the sender (of the REPLY) has accepted

the command (being REPLYed to). NAK=1 indicates that the

sender has discarded the command (with the reason given by

the settings of the other bits of the CODE field).

NOT-READY=1 indicates that the sender (of the REPLY) is

willing to receive an END or INTERRUPT on this path.

READY=1 indicates that MESSAGE commands will also be received.

Normally only one REPLY command will be sent for each

other command. However MESSAGE, INTERRUPT, RESPONSE and

invalid END commands can be replied to by a REPLY with

ACK (or NAK)=1 and NOT-READY=1 and another REPLY, some

time later, with READY=1. [6]

The ACK and NAK bits are mutually exclusive and should

never both be on simultaneously, and similarly the READY

and NOT-READY bits.

Note that the READY/NOT-READY bit settings are only

relevant when a path is open.

 WORKING DOCUMENT

 18

RFC 705

Front-End Protocol

 WORKING DOCUMENT

2) COMMAND is 4 bits wide. It indicates the command for

 which this is a REPLY :

Value
 Meaning

 0
any of the following

 1
BEGIN

 2
LISTEN

 3
RESPONSE

 4
MESSAGE

 5
INTERRUPT

 6
END

 The value 0 is defined for cases where a Host does not

 wish to incur any overhead required to fill in the

 non-zero value.

3) CATEGORY is 3 bits wide. It specifies the category of

 the error indicated by the ACK bit being off :

Value
 Meaning

 1
Command not recognized

 2
Option not implemented

 3
Invalid

 4
Action failed.

 Its value is relevant only when NAK=1.

4) TYPE is 5 bits wide. It specifies which error occurred.

 Its value is relevant only when NAK=1. The possible values

 and meanings for the various errors and their corresponding

 CATEGORY subfield values are given under the description

 of each command.

Sequencing

 4i

Once communication between the Host and the FE has been established and each

side is "Ready for Business" (see Section 4b) the Host may at any time send

BEGIN or LISTEN commands for new indexes. The FE will acknowledge a BEGIN or

 WORKING DOCUMENT

 19

RFC 705

Front-End Protocol

 WORKING DOCUMENT

LISTEN with a REPLY and the index is then set-up providing that the REPLY

indicates no errors. Other BEGIN or LISTEN commands for the new paths on the

same index may be sent at any time after the index is set-up.

The FE will send a RESPONSE command for each path on completion of its attempts

to fulfill the Host's instructions. If an attempt failed (indicated by the

CODE field) then the path remains closed and another BEGIN or LISTEN for that

path can be sent. If the attempt was successful, then MESSAGE or INTERRUPT

commands can be sent after the Host has REPLYED to the RESPONSE.

An INTERRUPT or END command may be sent on any opened path after receiving

a REPLY for the previous command on the same path in the same direction. A

MESSAGE command may be sent if in addition the READY bit was on in the last

REPLY command.

New paths on the same index may be opened at any time after the index has

been set-up, or particular paths may be ENDed and then have new BEGINs or

LISTENs for them issued. An index remains set-up, even if all its paths are

closed, until an END command with PATH=0 is issued for the index.

Communication between the Host and the FE is terminated by an END with INDEX=0

and this will abort any remaining open paths and indexes.

Broadcasting

 4j

Broadcasting is an optional feature of the protocol. If it has been enabled

by the installation parameter, then the Host may send a MESSAGE or INTERRUPT

command on a particular index with PATH=0. This instructs the FE to send the

data contained in the TEXT field of the MESSAGE command (or an interrupt) on

every network connection corresponding to an open path of the specified index.

This feature will only occur on MESSAGEs from the Host to the FE (since no

utilization of it in the other direction is envisaged).

A broadcast MESSAGE is replied to with one or two REPLYs in the same way

as any other MESSAGE command. Flow control within the index is maintained

as if broadcast MESSAGEs were sent on a separate path, i.e., flow control

on other paths is not directly affected.

 WORKING DOCUMENT

 20

RFC 705

Front-End Protocol

 WORKING DOCUMENT

Note that for a broadcast MESSAGE command the FE will perform translation

on the data for each path in accordance with the BEGIN or LISTEN which

initiated that path. Thus, care must be taken when all paths of the

particular index do not have the same format on the Host side specified in

their TRANS-TYPE (see Section 6b).

Index 0

 5

Introduction

 5a

Index 0 provides a control link between the Host and the FE, and thus has no

network connections directly associated with it. The commands on this index

are used to establish and terminate the connection between Host and FE and to

control other indexes.

Path 0

 5b

Path 0 of Index 0 is used to pass global commands - i.e., those which do not

refer to any particular index or path. The currently defined commands are :

MESSAGE INDEX=0 COUNT PAD TEXT

 where TEXT = COMMAND [PARM1] [PARM2]

 COMMAND is 8 bits long

 PARM1 and PARM2 are 16 bits long

a) COMMAND=1 , PARM1=Hostid

This is the "Ready for Business" command which must be sent by both

Host and FE to establish communication between them. Count gives the

length of the TEXT field as usual. If COUNT=8, then just the COMMAND

field is present. If COUNT=24, then both the COMMAND and Hostid are

present.

The FE will never send a Hostid. The Host may send its Hostid in the

event that the FE is connected to more than one IMP or if alternate

routes to the network exist (e.g., via patch panels).

Until both sides have sent this command no other command is valid.

b) COMMAND=2 , PARM1=M , PARM2=N

 WORKING DOCUMENT

 21

RFC 705

Front-End Protocol

 WORKING DOCUMENT

This is the "CLOSING" command which is a purely information indication

that the sender's FEP module has been told that communication will be

terminated in M minutes for a period of N minutes (N=0 implies

unknown).

No action is required of the receiver, however he may be able to

distribute the information to his users.

c) COMMAND=3

This is the "CONTINUE" command which indicates that any previous

CLOSING command is now no longer true.

END INDEX=0 PATH+0 CODE

This command terminates the connection between the HOST and FE. All

other paths/indexes are automatically aborted and the FE will close

all network connections. The values of the CODE field are the same

as in the general END command.

Path 1

 5c

Path 1 is reserved for commands specific to a particular path or index. No

commands are presently defined; they will be at a later date when more

experience has been gained on the need for them.

Path 2

 5d

Path 2 of Index 0 is used for Operator-to-Operator communication between the

Host and the FE. It is an optional feature which is enabled by an installation

parameter.

MESSAGE commands are formatted in the normal manner with the sender requesting

that the TEXT field be displayed to the receiver's system operator.

Scenarios

 6

The following scenarios are included to provide the reader with a "feeling" for

FEP in a varied set of applications. The examples selected relate to existing

ARPANET protocols or other networking applications, and do not represent an

exhaustive list of capabilities.

 6a

 WORKING DOCUMENT

 22

RFC 705

Front-End Protocol

 WORKING DOCUMENT

Fields which are variable or not relevant are not shown (for purposes of

clarity) in the command strings in the following examples.

 6b

Host Implementation of User TELNET

 6c

BEGIN ndxa,PATH=1,host,SKT=1,,CONN-TYPE=duplex+ICP,NPATHS=1

The User TELNET process in the Host causes the BEGIN command to be issued.

When a successful RESPONSE has been returned by the FE, a typical duplex

TELNET connection will have been made to the Host specified in the BEGIN.

Host is Providing Server TELNET

 6d

LISTEN ndxa,PATH-1,HOST=0,SKT=1,,CONN-TYPE=duplex+ICP,NPATHS=32

With this one command the Server TELNET process in the Host has conditioned

the FE to LISTEN on Socket 1 (the well-advertised TELNET socket) and to

establish as many as 32 duplex data paths. The FE, through the RESPONSE

command, will report each connection as it occurs. Path 1 will represent

the first such duplex connection, etc. The Host may then manage the data

paths individually. Individual paths may be ended and placed back into a

LISTENing state by the Host. If at any time an END command specifying this

INDEX with a PATH of 0 were to be sent by the Host, all connections would

be dissolved, and for all practical purposes, the Host is no longer willing

to provide Server TELNET services.

Host is Providing Server FTP

 6e

LISTEN ndxa,PATH=1,HOST=0,SKT=3,,CONN-TYPE=duplex+ICP,NPATH=1

As soon as a RESPONSE for this LISTEN comes from the FE, the Host Server FTP

process should select a new INDEX and issue a new LISTEN for ndxb on socket 3.

The duplex connection which has been made is the control path for the file

transfer. Based upon control information passed between server and user on

ndxa (path 1) the server FTP will either:

BEGIN ndxa,PATH=2,(hostid etc. from response),NPATHS=1

 OR

LISTEN ndxa,PATH=2,(hostid etc. from response),NPATHS=1

 WORKING DOCUMENT

 23

RFC 705

Front-End Protocol

 WORKING DOCUMENT

When a RESPONSE command has been received to the previous command, the data

connection (PATH 2) will have been made and transfer of data may begin. The

values for TRANS-TYPE and CONN-TYPE for the LISTEN or BEGIN will be derived

from the exchange of information on the control path.

Host Is User FTP

 6f

BEGIN NDXA,PATH=1,HOSTID,SKT-3,,CONN-TYPE-duplex+ICP,NPATH=1

when a RESPONSE to this command has been returned by the FE the control path

will have been connected. The Host, after exchanging information on the

control path, may then proceed by issuing a BEGIN or LISTEN as in the Server

FTP example.

Teleconferencing

 6g

An INDEX with n PATHs permits up to n otherwise disassociated conversations

to be affiliated. Each path can be manipulated individually, or all paths as

a group. With the broadcast option -- a MESSAGE command specifying INDEX but

not specifying PATH will be broadcast to all open paths on that index. Thus

each host may direct its messages to any or all parties.

A "conference" may be initiated by any host who issues a LISTEN with multiple

duplex paths on an agreed upon (but not necessarily well advertised) socket.

When some foreign host connects, an ordinary TELNET connection exists. If,

however, a third or forth or more parties connect, the hosts already engaged

in the conversation may elect to inform the late comers of the members already

involved. Each host may then elect to connect to as many other hosts as he

desires. (The parties could agree as to who would BEGIN and who would LISTEN).

Following this scheme [it is not a protocol] all parties participate equally,

there is no moderator. Each host decides to whom he will speak. Using the

initial LISTEN, a variation on this would permit the LISTENer to be moderator

and require that he relay messages to other parties, as desired.

In summary, the data path mechanism permits a group of users to select an

agreed upon socket, appoint a "moderator," and at a prescribed time engage in

a conference without benefit of special protocol implementations in the FE

or in any of the hosts (except possibly the moderator).

 WORKING DOCUMENT

 24

RFC 705

Front-End Protocol

 WORKING DOCUMENT

Example of the Use of Simplex Connections

 6h

The Simplex connection types permits a host to LISTEN on a group of simplex

sockets of a particular gender. If the host supported a group of line

printers, for example, the Line Printer Applications Program could perform a

LISTEN on a socket advertised to be his "Printing Socket," specifying as many

receive paths as he had printers. Foreign hosts could then connect (via ICP)

to his print socket. They would be given an appropriate working socket value

and then connect to an available printer. In this way up to n foreign hosts

may be connected to his n printers at all times. All that any needs to know

to avail themselves of printing services is the server host's print socket.

[1]

Host Implementation

 7

Concepts

 7a

The Front-End Protocol permits a Host to make use of the network through

existing low-level protocols, without requiring that it be cognizant of the

implementation details of those protocols.

Implementation of FEP in the Host is in terms of the function it is performing

or the service it is providing. Information regarding sockets is available

to the sophisticated user, but can be ignored if not relevant to the problem

at hand.

The Host should provide the equivalent of a BEGIN, LISTEN, MESSAGE, INTERRUPT,

and END command. In other words, the human user or applications level process

has at its disposal the full power of FEP.

The FEP module in the Host serves as a control mechanism to multiplex/

demultiplex traffic between itself and the FE. In appearance and function it

is much like any multi-line interface driver. It handles REPLYS, reports

errors, etc. The FEP module must also assume the responsibility for assignment

of indexes. This could easily be implemented as a "GETINDEX" subroutine

which would allow a user to ask for an index to be assigned to him. The

user could then proceed to do BEGINs, LISTENs, etc. on that index.

A server process makes itself available to the network at large by issuing an

appropriate LISTEN. The Host FEP module would not have to be aware of what

servers were implemented or in operation. The server process, when it was

 WORKING DOCUMENT

 25

RFC 705

Front-End Protocol

 WORKING DOCUMENT

activated, could do a "GETINDEX," followed by a LISTEN on its well-advertised

socket, and then proceed from there. The Host FEP module simply associates

indexes to processes and passes the incoming traffic to the appropriate process

for analysis and response. It maintains flow between itself and the FE through

the generation and receipt of REPLYs.

The type of data structures, or format of information employed in the

implementation of the FEP commands in the Host is, of course, up to the

implementor. BEGIN could be a macro call, with the various information

passed as parameters to the Host FEP module -- which would then arrange it

into a command for delivery to the Front-End processor. The important

consideration is not how the commands are implemented, but simply that their

function is provided. It might be desirable, for instance, to implement the

Host such that the front-end processor looks like a special I/O device. In

this case, it may be appropriate to implement a form of OPEN [for BEGIN or

LISTEN], a GET or PUT [for MESSAGE], CLOSE [for END], etc...

Regardless of the implementation details, it appears that, while it is the

responsibility of one control module to assign and manage INDEXes, data paths

are entirely the responsibility of the process which "owns" the INDEX.

Installation Parameters

 7b

To package the software for the FE for a given Host, that Host supplies a

number of parameters defining what FE capabilities it requires. These

parameters are input to a system-generation procedure to produce the particular

FE code.

The parameters are:

Byte Size

This gives the size in bits, into a multiple of which each and every

field of a command string will be right-justified (i.e., the

information bits come last, preceded by as many padding bits as are

needed to complete the least integral number of bytes).

Its value will normally be 8 but other values will be accommodated

as necessary.

 WORKING DOCUMENT

 26

RFC 705

Front-End Protocol

 WORKING DOCUMENT

Command String Padding

This gives the size in bits of the width of the hardware interface

between the Host and the FE, such that every command string

transmitted in either direction will have padding appended to

complete the least multiple of this width.

In the typical implementation, this parameter will be 0 and any

padding required will be appended/discarded by the line protocol

underlying FEP.

Pad Field Length

This gives the size in bits of the PAD field in the MESSAGE command.

This enable a Host to have the TEXT field start on a convenient

boundary.

Its value can be anywhere in the range 0 to 64.

Maximum of MESSAGE

This gives the maximum length of a MESSAGE command string.

Because buffer allocation in the FE is based on this parameter,

its value should be chosen with care.

Maximum number of Indexes

This gives the maximum number of indexes which may be set-up at any one

time.

Maximum Number of Paths

This gives the maximum number of paths within one index which may be

open at any one time.

Translation Types

This gives the set of required values and meanings of the TRANS-TYPE

field of the BEGIN/LISTEN commands. The TRANS-TYPE field is divided

into two 8-bit subfields; the first giving the format of data on the

 WORKING DOCUMENT

 27

RFC 705

Front-End Protocol

 WORKING DOCUMENT

network side; the second giving the format of data on the Host side.

The FE is required to translate between these formats all data

contained in the TEXT field of MESSAGE commands.

This parameter specifies the required formats and their values in the

8-bit subfields. The value 0 is reserved to mean "bit-string" and

when it appears as either (or both) of the subfields it implies no

translation is to be done.

Broadcast Option

This specifies whether the Host wants to be able to use the Broadcast

feature (see Section 3j).

Operator-to-Operator Communication Option

This specifies whether the Host wants the ability to send messages

to the FE operator or to have the Host's operator receive messages

from the FE.

Other options may be included in the protocol at some later date and these will

be available through installation parameters similar to the Broadcast option.

Note that all of these parameters affect the size and complexity of the FE

code. Thus it is important that their values be chosen carefully so as to

maximize FE efficiency while minimizing Host implementation effort.

For descriptions of individual Host implementations and a list of the options

available so far, see Appendix D.

FE Implementation

 8

FEP is device independent. For the present however, an initial implementation

will be accomplished using the DEC PDP/11 computer as the FE device and the

front-end software is to be based upon an extended version of the original ELF

system developed at SCRL.

For more detailed information, see Appendix C.

by :

 9

G. W. Bailey
(BAILEY@OFFICE-1)

K. McCloghrie (MCCLOGHRIE@OFFICE-1)

 WORKING DOCUMENT

 28

RFC 705

Front-End Protocol

 WORKING DOCUMENT

 APPENDIX A

 10

 References

[1]
ICP is used in this document in a less strict manner than specified

in NIC 7101, in that it is not necessarily two simplex connections

that are set up as the result of the exchange of the socket number

on the initial connection.

[2]
An example of connections needing to be affiliated, is in the

implementation of FTP, where the control connection and the data

connection have a defined relationship in their socket assignments.

[3]
Note that a range of socket numbers is reserved for use by an index

when it is set-up (cf. AEN).

However, socket numbers for the paths of an index are not necessarily

contiguous. For instance, when the next path opened after a SEND

path is another SEND path, or when a path other than the first of an

index is opened with ICP specified. Nevertheless, if a protocol

requires contiguous sockets, then the opening of the paths in a logical

manner will provide the contiguity.

[4]
One possible translation will be from a Network Virtual Terminal on

the network side to a local terminal type on the Host side.

[5]
The FE will directly equate the INTERRUPT command with the Host-Host

protocol INR/INS commands.

[6]
Note that the READY indication in a REPLY is, in the general case,

not directly related to a network RFNM; unless it is heavily loaded,

the FE will be buffering possibly more than one message (in either

direction) until flow control mechanism allow the messages to be sent

on.

However, it is possible that a particular Host might wish to have

knowledge of receipt of a previous message before transmitting the

next. In this case, the FEP implementation could be set up to only

indicate READY after receiving the RFNM and possibly only send RFNMs

after receiving a REPLY containing an ACK.

 WORKING DOCUMENT

 29

RFC 705

Front-End Protocol

 WORKING DOCUMENT

 APPENDIX B

 11

 State Diagrams

In the state diagrams below the following notation is used:

REPLY(A) - REPLY with ACK=1, READY/NOT-READY irrelevant

REPLY(N) - REPLY with NAK=1, READY/NOT-READY irrelevant

REPLY(R) - REPLY with ACK=0, NAK=0, READY=1

REPLY(A+R) - REPLY with ACK=1, READY=1

REPLY(N+R) - REPLY with NAK=1, READY=1

REPLY(A+NR) - REPLY with ACK=1, NOT-READY=1

REPLY(N+NR) - REPLY with NAK=1, NOT-READY=1

 State Diagram for INDEX

/ ------\ /-------\ /-----\

! !BEGIN(new index) ! ! ! !

! !->--------------->-!Index ! ! !

!Index !LISTEN(new index) !Open ! ! !

!Closed ! !Pending! !Index!

! ! REPLY(N)! !REPLY(A) !Open !

! !-<---------------<-! !->------->-! !

! ! \-------/ ! !

! ! ! !

! ! /-------\ END(Path=0)! !

! ! ! !-<-------------<-! !

! ! REPLY(A)!Index ! ! !

! !-<---------<-!Close !REPLY(N) ! !

! ! !Pending!->------------->-! !

 \-------/ \-------/ \-----/

 WORKING DOCUMENT

 30

RFC 705

Front-End Protocol

 WORKING DOCUMENT

 APPENDIX B (continued)

 State Diagram for Whole Path

/------\BEGIN /----------\

! !->-------->-! !

! !LISTEN !Connection!

!Path ! !Pending !REPLY(A) /-------\

!Closed! REPLY(N)! !->------------>-! !

! !-<--------<-! ! ! !

! ! \----------/ !Path !

! ! !Conn- !

! ! /-----\ RESPONSE(CODE>0)! ecting!

! ! ! !-<-----------------<-! !

! ! !Path ! ! !

! ! REPLY(A)!Abort! END(PATH>0)! !

! !-<--------<-!Pend-!-<-----------------<-! !

! ! ! ing ! ! !

! ! ! !REPLY(N) ! !

\------/ ! !->----------------->-! !

 \-----/ ! !

 ! !

 /-------\ ! !

 ! ! RESPONSE(CODE=0)! !

 /----\ !Path !-<--------------<-! !

 ! ! !Open ! ! !

 !Path! !Pending!REPLY(N) ! !

 !Open! REPLY(A)! !->-------------->-! !

 ! !-<--------<-! ! \-------/

 \----/ \-------/

 WORKING DOCUMENT

 31

RFC 705

Front-End protocol

 WORKING DOCUMENT

 APPENDIX B (continued)

 State Diagram for Each Direction of Path

/----\MESSAGE /-------\ /-------\

! !->---------------->-! !REPLY(A+NR) ! !

!Path!INTERRUPT !Command!->--------->-!Message!

!Open! !Blocked!REPLY(N+NR) !Blocked!

! ! ! ! ! !

! ! REPLY(A+R)! ! INTERRUPT! !

! !-<----------------<-! !-<---------<-! !

! ! REPLY(N+R)\-------/ ! !

! ! REPLY(R)! !

! !-<----------------------<---------------<-! !

! ! ! !

! !END(PATH>0) /-------\ END(PATH>0)! !

! !->---------------->-! !-<---------<-! !

! ! ! ! ! !

! ! REPLY(N+R)!Path !REPLY(N) ! !

! !-<----------------<-!Close !->--------->-! !

\----/ !Pending! \-------/

 ! !

/------\ REPLY(A)! !

!Path !-<--------------<-! !

!Closed! ! !

! ! \-------/

\------/

 WORKING DOCUMENT

 32

RFC 705

Front-End Protocol

 WORKING DOCUMENT

 APPENDIX C

 Front-End Implementation

Introduction

A Network Access System (NAS), developed for a DEC PDP/11 computer, supports

the current Imp-Host, Host-Host and ICP protocols. The implementation of

these protocols facilitate process-process communications across the network

and multi-user TELNET access to foreign hosts. This NAS provides the FE

environment in which FEP is implemented.

The NAS system is comprised of a Kernel or executive section and a Network

Control Program (NCP) plus a collection of modules to support device

interfaces, handle terminals, and implement applications, as appropriate. The

software is modular and extensible.

The KERNEL

The Kernel of the system consists of a set of functional modules which perform

the task of resource management in a multiprocessing environment. This allows

processes to be created, vie for processor service according to priority,

intercommunicate, and be terminated. System primitives exist for various

tasks such as process creation and synchronization, storage allocation, and

sharing of the interval timer.

The term process used here describes an autonomous sequence of states brought

about by the PDP-11 processor; a process' state is characterized by the set of

processor registers, a stock, and process-owned storage areas. Process share

storage areas which are accessed only (eq. pure code). Processes also share

storage areas which may be updated (eq. control tables). In this case an

allocation mechanism is utilized to prevent simultaneous ownership of an

updatable storage area. The storage area is thus viewed as a sequentially

sharable resource which is allocated by the process, modified, and then

released.

Processes are given control of the processor by a single procedure called the

Dispatcher. Processes are said to be in a ready state or in a waiting state.

When a process blocks itself, control is given to the highest priority ready

process.

 WORKING DOCUMENT

 33

RFC 705

Front-End Protocol

 WORKING DOCUMENT

Each process has an associated input message queue. This queue is the vehicle

for interprocess communication. A process is blocked (put into a wait state)

when its input message queue becomes empty (voluntary wait), or when an

interrupt occurs (involuntary wait) because a higher priority process is to

receive control of the processor. A process may voluntarily block itself

waiting for any signal, or it may block itself for a specific event to be

posted to its input message queue.

The Network Control Program

The NCP provides "third level" protocol functions to local processes. It

contains a process which decodes and passes messages which have been received

from the IMP and placed on the IMP-Host queue. This process interacts with

other processes which call the NCP to establish connections or to transmit

data. Thus the NCP is essentially divided into two parts:

 1)
a process which handles incoming messages from the network,

interprets IMP-Host and Host-Host control messages, and forwards

regular messages on established connections; and

 2)
a set of primitives which allow local processes to establish

connections to other processes across the network, and to perform

requests for data to be transferred on these connections.

There are two primary data structures used by the NCP to monitor the status

of network connections. The first is called the Host Table, and describes

that which is peculiar to each given host; the second is referred to as a

Connection Table and contains all information on the state of a local NCP

socket (connection). Connection Tables may be created either through

external requests (e.q., an RFC is received from a remote host) or through

internal requests (e.g., a local process performs a LISTEN).

Flow control is that portion of the NCP which governs the flow of data on

connections. There are two procedures which perform this task; one which

handles receive connections and one which handles send connections. These

procedures receive control when an event has occurred which may now make it

possible to transfer data on a connection.

Both send and receive flow control procedures have the responsibility of moving

data between local process buffers and messages being received or transmitted

over the network. In addition, they handle the formatting and unpacking of

 WORKING DOCUMENT

 34

RFC 705

Front-End Protocol

 WORKING DOCUMENT

messages received. Local processes are unaware that data is being transmitted

as discrete messages.

The NCP watchdog process monitors the state of network connections, checking

for error conditions and performing garbage collection tasks. It receives

control at periodic intervals and scans the list of known hosts, looking for

existing connections. For each host to which an input or output connection

exists, the Watchdog causes a Host-Host NOP message to be sent. Thus if a

remote Host crashes while data is being awaited, local processes are informed

of the error condition. The NCP takes notice of the remote crash when it

receives a IMP--Host type 7 control message (Destination Host Dead). It then

automatically closes all connections to that Host, and notifies using processes

of that fact.

A second function of the NCP Watchdog is to check for connections hung because

of an outstanding RFNM. If a RFNM is not received for a specified interval,

the message is discarded, and the associated connection closed.

The FEP Handler

The Front-End Protocol is implemented as a collection of related, but

specialized processes which manage network connections on the one side, and

manage FEP paths and indexes on the other. Some FEP processes are NCP users.

They cause network connections to be made, rule on incoming RFCs, and both

accept and generate network data. Other FEP processes support the Host.

These processes parse incoming commands, create indexes and paths, control

the generation of replies and generally manage the paths. Certain FEP

processes control specialized tasks such as translation of data, servicing of

LISTEN commands and generation of RESPONSE commands.

Two data structures provide control information for FEP activities. An Index

Table exists for each active index. Each Index Table associates one or more

Path Table entries. Information in the Path Table reflects the state of the

path, the translation type specified for data on this path, and necessary

information to associate the path to any appropriate NCP Connection Tables.

The Path Table is the common interface for all of the FEP modules. Most FEP

processes are activated to service some event which is usually associated to

a path. The action of the process will likely be dictated by the state of the

path as indicated by the Path Table entry, and may result in altering the state

of the path or the activation of one or more other FEP processes.

 WORKING DOCUMENT

 35

RFC 705

Front-End Protocol

 WORKING DOCUMENT

Two message queues provide Host input and output to the FEP modules. A line

protocol mechanism services these queues. Commands from the Host are placed

on the FEP Input queue by the line protocol process and the FEP Host Input

process is signaled. When an FEP Host Output module places a Command for the

Host on the host Output queue it signals the line protocol process.

The FEP implementation is basically Host independent down to the level of the

Host Input and Host Output queues.

The Line Protocol Mechanism

The device interface and the line protocol between the FE and the Host are

installation dependent. Because of this dependency, only a general discussion

of the Line Protocol Mechanism is possible in this context. Detailed

descriptions of the specific line protocols are included in the section for

each Host.

The communications discipline and physical device characteristics may vary

considerably from host to host. All FEP line protocols, however, will show

certain common characteristics. The interface between the FEP handler and the

Line Protocol Mechanism will always be Host Input and Host Output queues. All

line protocol mechanisms will be expected to guarantee the integrity of the

data. This implies some form of flow control, error detection/correction and

retransmission capability, as well as normal transmit/receive responsibilities.

The Line Protocol Mechanism will be expected to report failure after

unsuccessfully attempting to perform an I/O operation. The number of retries

etc. before reporting failure is an installation parameter. The FEP Handler

works only in terms of FEP commands. The line protocol may provide for block

transfers where each physical block is comprised of one or more FEP commands.

If such is the case, it is encumbent upon the Line Protocol Mechanism to

deblock the incoming Host commands before placing them in the Host Input queue.

The Line Protocol Mechanism will, in the general case, not manage any buffers.

After successfully transmitting a command to the Host it is responsible for

reporting the I/O complete, but the buffer space is freed or reused only by

the FEP process which "owns" that space. The FEP Handler might use buffer

assignment to control the rate of incoming traffic. When the FEP Host Input

queue is ready to accept an additional command, it would acquire a buffer and

signal the Line Protocol Mechanism, passing it a pointer to a buffer. This

 WORKING DOCUMENT

 36

RFC 705

Front-End Protocol

 WORKING DOCUMENT

is effectively a "read" request. When the line protocol handler has filled

the buffer, it adds it to the Host Input queue and signals I/O complete to

the appropriate FEP process.

If the nature of the physical connection is such that the FE must accept

unsolicited input, it may be necessary for the Line Protocol Mechanism to

have its own buffer pool, in addition. If this is the case, it must be

entirely managed by the line handler and transparent to the FEP Handler.

Data Translations

The TRANS-TYPE provisions in FeP may be employed for at least two general

services. First, it can be used for normal character set substitutions. This

is where, in the general case, there is a one-to-one relationship between the

two character sets.

The second service addresses the problem of data transformation. In this case,

there need not be a one-to-one relationship between incoming data and outgoing

data.

The translation mechanism uses a token (e.g., a character) from the incoming

data stream to index into a translation table. The result may be one of the

following:

a) do nothing, drop the character

b) output the character unchanged

c) substitute input character by output character

d) substitute input character by output string

e) activate a procedure indicated by the table

f) change the translation

g) test the translation mode and do any of the above depending

 on the result.

For each translation/transformation required by the Host a translation table

must be defined. For simplicity and clarity the TRANS-TYPE field in the FEP

commands allows the user to specify Host side and Network side as independent

entities. In actual execution the Host/Network pair addresses a translation

table which must have been previously defined. Note that for a duplex path

two translation tables are necessary (A->B is not the same as A<-B).

A collection of "standard" character sets will be addressed initially (EBCDIC,

ASC117, ASCII8, BCD, etc.) and at least NVT. As new requirements are defined

these will be added to a library which will then be available to subsequent

users.

 WORKING DOCUMENT

 37

RFC 705

Front-End Protocol

WORKING DOCUMENT

 APPENDIX D

 Host Implementations

To be written at a later date.

 WORKING DOCUMENT

 38

