
1

Dependability tree

2

A combined use of methods can be applied as means for achieving dependability.

These means can be classified into:

1. Fault Prevention techniques

to prevent the occurrence and introduction of faults

– rigorous developent, formal methods, testing,

quality control methods, ... (write free of bugs code)

– component screening, shielding, …

(prevent to insert external faults is not possible)

2. Fault Tolerance techniques

deal with faults at run-time

deliver correct service in presence of activated faults

and errors

3. Fault Removal techniques

remove faults in such a way that they are no more activated

4. Fault Forecasting techniques

to estimate the present number, the future incidence, and the

consequences of faults. Try to anticipate faults; do better design

introducing fault tolerance techniques

Means for achieving dependability

3

Chain of threats: Faults-Errors-Failures

From A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr. Basic Concepts and Taxonomy of Dependable

and Secure Computing, IEEE Transactions on Dependable and Secure Computing, Vol. 1, N. 1, 2004

4

Fault tolerance techniques

5

BASIC CONCEPT:

Fault tolerance mechanisms detect error states (not faults)

Fault tolerance techniques:

carried out via error detection, error processing and fault treatment

Protective redundancy:

additional components or processes that mask/correct errors or faults inside a system so they

do not become failures.

Signal the problem to the user.

dormant

fault Error

Normal

operation

Error

Recovery

Error processing

Fault activation

Error

mitigation

Error detection

Fault Treatment

6

Another fundamental aspect is damage confinement

Damage confinement:

before we start to use fault tolerance redundancy, we isolate the compromised

components

Fault treatment

fix the original problem, in such a way that it never occurs again

Fault passivation

- Deactivate a corrupted memory module in a computer

- Broken computer no more used

Phases of fault tolerance:

• Error Detection

• Damage Confinement

• Fault Treatment

7

Organisation of fault tolerance
(techniques involved in fault tolerance)

A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr. Basic Concepts and Taxonomy of Dependable and

Secure Computing, IEEE Transactions on Dependable and Secure Computing, Vol. 1, N. 1, 2004

8

Error detection

9

Error detection: Types of checks

Reasonableness Checks

Acceptable ranges of variables
Acceptable transitions
Divide by 0
Probable results

…………..

Specification checks (use the definition of “correct result”)

Examples
Specification: find the solution of an equation
Check: substitute results back into the original equation

Reversal Checks

the specified function of the system is to compute a mathemathical function,
output = F(input)

if the function has an inverse function F’, such that F’(F(x))=x,
we can:

compute F’output) and verify that F’(output) = input

10

Error detection: Types of checks

Replication Checks
Based on copies and comparison of the results

- two or more copies

- a mechanism that compares them and declares an error if differ

- the copies must be unlikely to be corrupted together in the same way

Do not protect from everything

Assumption on faults is very important.
Most of the time single fault assumption

What is the fault model for sw? Same input, same bug in the software, they have a COMMON
CAUSE FAILURE

In case of hardware fault, we tolerate the error. Hw copies are not the same system.

What is the fault model for hw? Faults are independent.

Sys

Sys comparator

11

Self-checking component
a component that has the ability to automatically detect the existence of the fault and the

detection occurs during the normal course of its operations

Typically obtained using coding techniques: inputs and outputs are encoded (also different

codes can be used)

Applicable to small circuits: Comparators, Voters, …

Clear error confinement

Error detection: Types of checks

for each unit of data, e.g. 8 bits, add a parity bit so that the total number of 1’s in

the resulting 9 bits is odd

10100000 1

byte parity

bit

10100100 1
communication

channel
one bit flip

Two bit flips are not detected

Codes
add information to data in such a way that errors can be identified

fault: bit flip
mechanism: parity bit
error detection: data do not satisfy the parity bit

12

Coverage:
probability that an error is detected conditional on its occurence

Latency:
time elapsing between the occurrence of an error and its detection (a random
variable)
how long errors remain undetected in the system

Damage Confinement:
error propagation path

the wider the propagation, the more likely that errors will spread outside the
system

Preventing error propagation:

- “minimum priviledge”

- discriminating on type of use, users, ..

- Protection mechanisms:
message-passing versus sharing memory,
hardware and time for authorization

Effectiveness of error detection (measured by)

13

System structuring principles (mutual suspicion)

1)Each component examines each request or data item from other components

before acting on it

For example, each software module checks legality and reasonableness of

each request received

- added overhead

- need for providing signalling back to requestor and own strategy for

dealing with erroneous requests

2) Make error confinement areas :

Units of mitigation concept:

error detection and error processing inside the module. At the boundery,

the module can signal if it is faulty;

Avoid errors spread over the system;

create barriers at the interface of the faulty module

14

Recovery

15

Error Handling

1. Error recover.

There is an error state. We have applied error confinement. We

want to recover

• Forward recovery
transform the erroneous state in a new state from which the system can

operate correctly

• Backward recovery
bring the system back to a state prior to the error occurrence

- for example, recover from sw update by using the backup

Backward and forward recovery can be combined if the error persists

16

Forward error recovery

- Requires to assess the damage caused by the detected error or by errors

propagated before detection

- Usually ad hoc

Example of application:

real-time control systems, an occasional missed response to a sensor

input is tolerable

The system can recover by skipping its response to the missed

sensor input.

Backward error recovery

Retry

Redo with the same component

17

A copy of the global state is called checkpoint.

Checkpoints

- may be taken automatically (periodically) or upon request by program

- need to be correct (consistent)

- need eventually to be discarded

- survival of checkpoint data

Consistency of checkpoint in distributed systems

snapshot algorithms: determine past, consistent, global states

Backward error recovery

Checkpointing

x

1

2

3

a

b 4

5

c 6

dProcess A

Process B

Process C

e

Checkpoint

x Error

Message passed

domino effect

18

save the state from time to time; restore the state if you have problems

Loss:

- computation time between the checkpointing and the rollback

- data received during that interval

Basic issues:

- Checkpointing/rollback (resetting the system and process state to the state stored

at the latest checkpoint) need mechanisms in run-time support

- take a checkpoint before each message sent/received or other external events

- take coordinated checkpointing

- overhead of saving system state

(minimize the amount of state information that must be saved)

Class of faults for which checkpoint is useful: transient faults (disapper by themselves)

used in massive parallel computing, to avoid to restart all things from the beginning

(continue the computation from the checkpoint, saving the state from time to time)

Class of faults for which checkpoint is not useful: harware fault; design faults

(the system redo the same things)

Backward error recovery: Checkpointing

19

2. Error compensation (error mitigation)

tolerate faults in the systems

Compensation (on demand / systematically)

fault masking

A general method to achieve fault tolerance: perform multiple

computations through multiple channels, either sequencially or

concurrently, then apply voting

Tolerance of physical faults

channels may be of identical design

(we have the assumption that

hardware components fail

independently)

Tolerance of software faults

channels must implement the same

function via separate designs and

implementations

(design diversity)

20

Disadvantage: loss of protective redundancy

Practical implementations of compensation: masking and recovery

(includes error detection and fault handling)

Module 1

Module 3

Module 2 Voter
output

Triple Modular Redundancy (TMR) – fault masking

Triplicate the modules and perform a majority vote to determine the output of

the system

- 2/3 of the modules must deliver the correct results

- effects of faults neutralised without notification of their occurrence

- masking of a failure in any one of the three copies

Sometimes some failures in two or more modules may occurr in such a way

that a failure is avoided (compensating failures)

21

Various starategies for implementing fault tolerance

Choice of the strategy depends upon the underlying fault assumption that

is being considered in the development process

The classes of faults that can actually be tolerated depend on 1) the fault

assumption and 2) the independence of the redundancies with respect

to the fault creation and activation

22

State of a computation

- Program visible variables

- Hidden variables (process descriptors, …)

- “External state”:
files, outside world (for example alarm already given to the aircraft pilot, …)

Compensating actions may be also necessary for computing systems
that interact with the outside world

If an external communication is not correct, a compensating action may limit
or undo the damage

Example: a cash dispensing machine gives less money

compensating action: tell the bank and ask for the money back

A special case: Interaction with the external world

23

Example (backward/ forward error recovery):

assume a real-time program communicated with its environment

If backward recovery is invoked, the environment would not be able to recover
along with the program and the system would be left in an inconsistent state.

In this case, forward recovery would help return the system to a consistent
state by sending the environment a message informing it to disregard
previous output from the program.

24

Fault assumptions play a fundamental role

Fault tolerance applies to all classes of faults

Mechanisms that implements fault tolerance should be protected against

the faults that might affect them

Observations

25

1. Diagnosis

identifies and records the cause of errors in terms of location and type

Fault location

can the error detection mechanism identify the faulty

component/task with sufficient precision?

- LOG and TRACES are important

- diagnostic checks

- codes

- …

Fault handling
prevents faults from being activated again

26

System level diagnosis:

- a system is a set of modules

- testing graph describes who tests whom

- checks are never 100% certain

Suppose A tests B.

If B is faulty,

A has a certain probability (we hope close to 100%) of finding out.

But if A is faulty too,

it might conclude B is OK; or says that C is faulty when it isn’t

Fault handling

27

1. can the error detection mechanism identify the faulty component/task with

sufficient precision?

- LOG and TRACES are important

- diagnostic checks

- codes

- …

2. What if diagnostic information / testing components are themselves damaged?

3. System level diagnosis:

A system is a set of modules:

- who tests whom is described by a testing graph

- checks are never 100% certain

Suppose A tests B.

If B is faulty,

A has a certain probability (we hope close to 100%) of finding out.

But if A is faulty too,

it might conclude B is OK; or says that C is faulty when it isn’t

Fault handling

1. Diagnosis

identifies and records the cause of errors in terms of location and type

28

- Reconfigure faulty components out of the system

- physical reconfiguration

turn off power, disable from bus access, ..

- logical reconfiguration:

don’t talk, don’t listen to it

- Excluding faulty components will in the end exhaust available redundancy

-insertion of spares

-reinsertion of excluded component after thorough

testing, possibly repair

2. Isolation

physical or logical exclusion of faulty components

in partecipating in service delivery

Faulty components could not be left in the system

- faults can add up over time

3. Reconfiguration

Newly inserted components may require:

- reallocation of software components

- bringing the recreated components up to current state

4. Reinitialization

29

Various strategies for implementing fault tolerance

Solid faults: permanent faults whose activation is reproducible

Elusive faults: permanent faults whose activation is not

systematically reproducible (e.g, conditions that occur

in relation to the system load, pattern sensitive faults

in semiconductor memories, …)

Intermittent faults: transient physical faults + elusive development faults

A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr. Basic Concepts and Taxonomy of Dependable and

Secure Computing, IEEE Transactions on Dependable and Secure Computing, Vol. 1, N. 1, 2004

30

Fault tolerance uses redundancy for Error detection and Recovery

Error detection must be a trustworthy mechanism

Fault tolerance relies on the independency of redundancies with respect to the process of fault creation
and activations

When tolerance to physical faults is foreseen, the channels may be identical, based on the assumption
that hardware components fail independently

When tolerance to design faults is foreseen, channels have to provide identical service through separate
designs and implementation (through design diversity)

Fault masking will conceal a possibly progressive and eventually fatal loss of protective redundancy.

Practical implementations of masking generally involve error detection (and possibly fault handling),
leading to masking and error detection and recovery.

Observations

