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State-based models

Model-based evaluation of dependability 
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Availability
Availability - A(t) 

the probability that the system is operating correctly and is 

available to perform its functions at the instant of time t
More general concept than reliability: 

failure and repair of the system

Repair rate – which is the average number of repairs that occur 

per time  period, generally number of repairs per hours. Analogous 

to failure rate, constant repair rate 

m(t) = m

MTTR - The Mean Time To Repair  is the average time required 

to repair the system.   Analogous to MTTF, MTTR is expressed in terms 

of the repair  rate:

Failure events and repair events are not independent. 
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State-based models: Markov models 

Model-based evaluation of dependability 

Characterize the state of the system at time t:

- identification of system states

- identification of transitions that govern the changes of state 

within a system

Each state represents a distinct combination of failed and working 

modules

The system goes from state to state as modules fail and repair. 

The state transitions are characterized by the probability of failure 

and the probability of repair
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Main points:

- systems with arbitrary structures  and complex 

dependencies  can be modeled

- assumption of independent failures no longer 

necessary

- can be used for both reliability and availability modeling

Model-based evaluation of dependability 

Markov models (a special type of random process) :

Basic assumption: the system behavior at any time 

instant depends  only on the current state

(independent of past values)
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Random variable

a random variable X is a function from a sample space S

to reals numbers

Let X be a random variable representing the result of  tossing a die

Sample space: 1, 2, 3, 4, 5, 6 X (1) = 1/6 X (2) = 1/6  ……

The probability assigned to each output of the experiment is 1/6

P[X=1]=1/6       P[X=2]=1/6  …………..

Random variable
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Random process

a collection of random variables {Xt } indexed by time

The sequence of results of tossing a die can be expressed by a 

random process 

{Xt }  with t = 0, 1, 2, 3. …

P[X0 = 4] = 1/6 

P[X1 = 4 ] = 1/6 

P[X4 = 4 | X3 = 2] = P[X4 = 4 ] = 1/6    

In this case, the random variables  are independent

P[Xi = j] = 1/6  for all i and for all j

Random process
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Random processes

Continuous-time random process

state transitions occur at random intervals transition 

(rates assigned to each transition)

Discrete-time random process 

all state transitions occur at fixed intervals (probabilities assigned to each 

transition)

State space S of a random process {Xt}: the set of all possible values the 

process can take 

S = {y: Xt = y, for some t}

For example,

Xt    number of faulty components at time t
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In a general random process {Xt }  the value of the random variable 

Xt+1 may depend on the values of the previous random variables

Xt0 Xt1 ............Xt.  

Random process

Markov process
the state of a process at time t+1 depends only on the state at 

time t, and is  independent on any state before t.

Markov property: “the current state is enough to determine 
in a stochastic sense the future state”
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Markov process
steady-state transition probabilities

The probability of transition from state i to state j does not depend 

by the  time.   This probability is called pij

Let {Xt, t>=0} be a Markov process. The Markov process X has 

steady-state transition probabilities if for any pair of states i, j:
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Transition probability matrix
If a Markov process is finite-state, we can define the transition 

probability matrix P (nxn) 

pij = probability of moving from state i to state j in one step

row i of matrix P:

probability of make a transition starting from state i

column j of matrix P:

probability of making a transition from any state to state j 
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Transition probability after n-time steps

THEOREM: Generalization of the steady-state transition probabilities.

For any i, j in S, and for any n>0

Definition: steady-state transition probability after n-time steps

Definition: transition matrix after n-time steps
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Properties:

Transition probability after n-time steps

Definition:

Si=0,.., n pij = 1

It can be proved that:

P(n) = Pn where Pn = P. P. … . P

the n-th power of P 
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Reliability/Availability  modelling

Markov model: 

graph where nodes are all the possible states and arcs are the possible 

transitions between states (labeled with a probability function) 

Each state represents a distinct combination of working and failed 

components

example: state 0: 0 faulty components        state 1: 1 faulty component

As time passes, the system goes from state to state as modules fails and 

are repaired

1-p
p

Discrete-time Markov model

0 1

……
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Discrete-time Markov model of a single system 
with repair

0 1

1-pf
pf

1-pr

pr

{Xt }  t=0, 1, 2, ….    S={s0, s1}

- all state transitions occur at fixed intervals

- probabilities assigned to each transition

The probability of state transition depends only on the current state

Graph model
Transition Probability Matrix

State s0 : working

State s1: failed

- Pij = probability of a transition from state i to state j

- Pij >=0

- the sum of each row must be one

1-pf
pf

pr 1- pr

P = 

current state

new state

0

0

1

1

pf

pr Repair probability

Failure probability
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Discrete-time Markov model

State j can be made an trapping state with pjj = 1

0.9 0.1

0.5 0.5

[p0(0), p1 (0)] = [ 1, 0]

[ 1, 0] = [ 0.9, 0.1]

[p0(1), p1(1)] 

initial state: working

Initial state occupancy vector 

[p0(0), p1(0)] 

State occupancy vector after k time steps:

[p0(k), p1(k)]

State occupancy vector    (state space distribution) 
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Transient analysis 
probability of being in a state  after  n  time-steps

1-pf
pf

pr 1- pr

[p0(n), p1(n)] = [p0(n-1), p1(n-1)]

n
1-pf

pf

pr 1- pr

[p0(n), p1(n)] = [p0(0), p1(0)]
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Limiting behaviour

A Markov process can be specified in terms of the state occupancy 

probability vector [p0(n), p1(n)]  and a transition probability matrix P

[p0(t), p1(t)]  = [p0(0), p1(0)]  Pt

The limiting behaviour depends on the characteristics of its states.  

Sometimes the solution is simple. 

The limiting behaviour of a Markov process (steady-state behaviour):

Transitions at fixed time intervals:

[p0(t), p1(t)]
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failed state as  trapping state  
Discrete-time Markov models: Reliability

0 1

1-pf
pf

1

Graph model
Transition Probability Matrix

1-pf
pf

0
P = 

current state

new state

0

0

1

1

1
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Continuous-time models: 

state transitions occur at random intervals 

transition rates assigned to each transition

Markov property assumption: 

the length of time already spent in a state does not influence either the 

probability distribution of the next state or the probability distribution of 

remaining time in the same state before the next transition

These very strong assumptions imply that the waiting time spent in any 

one state is exponentially distributed 

Thus the Markov model naturally fits with the standard assumptions that 

failure rates are constant, leading to exponential distribution of inter-

arrivals of failures  

Continuous-time Markov models
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Continuous-time Markov models

Single system  with repair

 failure rate, m repair rate 

State occupancy vector 

p0(t) probability of being in state 0 at time t (operational state)

p1(t) probability of being instate 1 at time t  (failed state)

Graph model

Transition Matrix P
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Probability of being in state 0 or 1 at time t+Dt:

Continuous-time Markov models

Performing multiplication, rearranging and dividing by Dt, taking the limit as 

Dt approaches to 0:

probability of being in 

state 0 at time t+Dt

Chapman-Kolmogorov equations
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Matrix form:

Continuous-time Markov models

The set of equations can be written by inspection of a transition diagram 

without self-loops and Dt’s:

T matrix

Continuous time Markov model graph

For each state: the sum of the flows out of the state plus the flow into the state 

must be 0
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Continuous-time Markov models

p0(t) probability that the system is in the operational state at time t, 

availability at time t

The availability consists of a steady-state term and an exponential 

decaying transient term 

A(t)

Steady-state solution

Chapman-Kolmogorov equations: derivative replaced by 0; p0(t) replaced by p0(0) and p1(t) 

replaced by p1(0) 
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Availability as a function of time 

 = 0.001

m = 0.1

The steady-state 

value is reached in 

a very short time
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failed state as  trapping state  
Continuous-time Markov models: Reliability

Differential equations:

Single system without repair

T matrix
Continuous time Markov model graph

Dt = state transition probability

 = failure rate

We can prove that:
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Markov chain

A Markov chain is a Markov process X with discrete state space S. 

A Markov chain is homogeneous if X has steady-state transition 

probabilities

We consider only homogeneous Markov chains

Discrete-time Markov chains (DTMC)

Continuous-time Markov chains (CTMC)
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X random process that represents the  number of operational memories and the 

number of  operational processors at time t

Given a state (i, j): 

i is the number of operational memories; 

j is the number of operational processors

An example of modeling (CTMC)

m failure rate for memory

p failure rate for processor

Multiprocessor system with  2 processors and 3 shared memories system.

System is operational if at least one processor and  one memory are 

operational.

S = {(3,2), (3,1), (3,0), (2,2), (2,1), (2,0), (1,2), (1,1), (1,0), (0,2), (0,1)}
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(3, 2) -> (2,2)  failure of one memory

(3,0), (2,0), (1,0), (0,2), (0,1)  are absorbent states

m failure rate for memory

p failure rate for processor

Reliability modeling
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 Assume that faulty components are replaced and we evaluate the 

probability that the system is operational at time t

 Constant repair rate m (number of expected repairs in a unit of time)

 Strategy of repair:

only one processor or one memory at a time can be substituted

 The behaviour of components (with respect of being operational or failed) 

is not independent:  it depends on whether or not other components are 

in a failure state.  

Availability modeling
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 Strategy of repair:

only one component can be substituted at a time

m failure rate for memory

p failure rate for processor

mm repair rate for memory 

mp repair rate for processor



31

 An alternative strategy of repair:

only one component can be substituted at a time  and processors have  

higher priority

 exclude the lines mm representing memory repair in the case where there 

has been a process failure


