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Basic building blocks for fault-tolerance

in distributed systems
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Fault tolerant distributed systems

Multiple isolated processing nodes that operate concurrently 
on shared informations 

Information is exchanged between the processes from time 
to time

Algorithm construction: 
the goal is to design the software in such a way that the 
distributed application is fault tolerant

- A set of high level faults are identified

- Algorithms are designed that tolerate those faults 
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Fault models in distributed systems

Node failures
-Byzantine

-Crash

-Fail-stop

-...

Communication failures

-Byzantine

-Link (message loss, ordering loss)

-Loss (message loss)

-...

Byzantine

Processes :
– can crash, disobey the protocol, send contradictory messages, 

collude with other malicious processes,...

Network:
– Can corrupt packets (due to accidental faults)

– Modify, delete, and introduce messages in the network
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The more general the fault model, the more costly 
and complex the solution  (for the same problem)

Byzantine

Crash

Fail-stop

No failure

GENERALITY COST / COMPLEXITY

Arbitrary failure approach (Byzantine failure mode) 

Architecting fault tolerant systems 
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Architecting fault tolerant systems 

We must consider the system model:
- Asynchronous 
- Synchronous
- Partially synchronous
- …

Develop algorithms , protocolos that are useful building 
blocks for the architect of  faut tolerant systems:

- Consensus 
- Atomic actions 
- Trusted components
- …….
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Basic building blocks for fault-tolerance

• Atomic actions

action executed in full all or has no effect

• Consensus protocols

correct replicas deliver the same result

• Reliable broadcast

reliability of messages exchanged within a group of processes



7

Atomic Actions
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Atomic actions
Atomic action: an action that either is executed in full or has no effects at all

Atomic actions in distributed systems:

- an action is generally executed at more than one node

- nodes must cooperate to guarantee that

either the execution of the action completes successfully at each node
or the execution of the action has no effects

The designer can associate fault tolerance mechanisms with the underlying
atomic actions of the system:

- limiting the extent of error propagation when faults occur and 

- localizing the subsequent error recovery

J. Xu, B. Randell, A. Romanovsky, R.J. Stroud, A.F. Zorzo,E. Canver, F. von Henke. Rigorous 
Development of a Safety-Critical System Based on Coordinated Atomic Actions. In FTCS-29, 
Madison, USA, pp. 68-75, 1999.
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An example: Transactions in databases

Transaction: a sequence of changes to data that move the data 
base from a consistent state to another consistent state.

A transaction is a unit of program execution that accesses and  
possibly updates various data items

Transactions must be atomic:

all changes are executes successfully  or data are not 
updated
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Transactions in databases

Let T1 and T2 be transactions

Transaction T2

Transaction T1

1) A failure before the termination of the transaction, results into a 

rollback (abort) of the transaction

2) A  failure after the termination with success (commit) of the 

transaction must have no consequences
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t1: begin transaction

UPDATE account

SET balance=balance + 500

WHERE account_number=45;

UPDATE account

SET balance=balance - 500

WHERE account_number=35;

commit

end transaction

site1
site2

t11: UPDATE account 

SET balance=balance + 500 

WHERE account_number=45;

t12:UPDATE account

SET balance=balance - 500 

WHERE account number=35;

t1

Client:

t1

t1: distributed transaction

(access data at different sites)

account_number

45

account_number
35

Account =(account_name, branch_name, balance)

each branch responsable

of  data on  its accounts

site1
site2

Banking application
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Atomicity requirement

if the transaction fails after the update of 45 and before the update of 35, money will 
be “lost” leading to an inconsistent database state 

the system should ensure that updates of a partially executed transaction are not 
reflected in the database

Atomicity of a transaction:

Commit protocol + Log in stable storage + Recovery algorithm

A  programmer assumes atomicity of transactions

A main issue: atomicity in case of  failures of various kinds, such as 
hardware failures and system crashes
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Tolerates:  loss of messages

crash of nodes

- One transaction manager TM

- Many resource managers RM

- Log file (persistent memory)

- time-out

Two-phase commit protocol

Prepare

ReadyPrepare

msg
Ready

msg

TM

Complete

Local

decisionDecision

msg

Ack

msg

Global

decision

RM

………………

………………

………………

Da: Atzeni, Ceri, Paraboschi, Torlone - Basi di Dati: Architetture e linee di evoluzione
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Timeout and uncertain period

Prepare Global Decision Complete

Ready Local Decision

TM

RM

decision ackprepare
msg

ready
msg msg

time-out 1 time-out 2

Finestra di incertezza

msg

Da: Atzeni, Ceri, Paraboschi, Torlone - Basi di Dati: Architetture e linee di evoluzione

Uncertain period:

if the transaction manager crash, a participant with Ready 

in its log cannot terminate the transaction
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Four-phase commit

P GC

Global Commit CompletePrepare

Ready Commit

partecipante (RM)

coordinatore (TM)

   backup

Da: Atzeni, Ceri, Paraboschi, Torlone - Basi di Dati: 

Architetture e linee di evoluzione

Coordinator backup is created at a different site

the backup maintains enough information to assume the role of

coordinator if the actual coordinator crashes and does not recover.

The coordinator informs the backup of the actions taken.

If the coordinator crashes, the backup assume the role of coordinator:

1) Another backup is started.

2) The two-phase commit protocol is completed.
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Three-phase commit

Prepare CompletePre-commit Global Commit

Local
Commit

Pre
CommitReady

Da: Atzeni, Ceri, Paraboschi, Torlone - Basi di Dati: 

Architetture e linee di evoluzione

Precommit phase is added. Assume a permanent crash of the coordinator. 

A participant can substitute the coordinator to terminate the transaction.

A participant assumes the role of coordinator and decides:

- Global Abort,  if the last record in the log Ready

- Global Commit, if the last record in the log is Precommit
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Recovery and Atomicity
Physical blocks: blocks residing on the disk.

Buffer blocks: blocks residing temporarily in main memory

Block movements between disk and main memory through the following operations:

- input(B) transfers the physical block B to main memory.

- output(B) transfers the buffer block B to the disk

Transactions

- Each transaction Ti has its private work-area in which local copies of all data items 

accessed and updated by it are kept.

- perform read(X) while accessing X for the first time;

- executes write(X)  after last access of X.

System can perform the output operation when it deems fit. 

Let BX denote block containing X.

output(BX) need not immediately follow write(X)
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Recovery and Atomicity

Several output operations may be required for a transaction

A transaction can be aborted after one of these modifications have been 

made permanent (transfer of block to disk) 

A transaction can be committed and a failure of the system can occur before 

all the modifications of the transaction are made permanent

To ensure atomicity despite failures, we first output information describing the 

modifications to a Log file in stable storage without modifying the 

database itself

Log-based recovery
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Example of Data Access

X      

Y     

A

B

x1

y1 

main memory : buffer

Buffer Block A

Buffer Block B

input(A)

output(B) 

read(X)

write(Y)
disk

work area

of T1

work area

of T2 

transaction

private

memory

x2

From: Database System Concepts, 5th Ed., McGraw-Hill, by  Silberschatz,  Korth and Sudarshan  

Physical Blocks
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DB Modification: An Example

Log                                  Write                              Output

<T0 start>

<T0, A, 1000, 950>

A = 950

<To, B, 2000, 2050>

B = 2050

Output(BB) 

<T0 commit>

<T1 start>

<T1, C, 700, 600>

C = 600

Output(BC) 

CRASH
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An Example

Below we show the log as it appears at three instances of time.

Recovery actions in each case above are:

(a)  undo (T0): B is restored to 2000 and A to 1000.

(b)  undo (T1) and redo (T0): C is restored to 700, and then A and B are  

set to 950 and 2050 respectively.

(c)  redo (T0) and redo (T1): A and B are set to 950 and 2050 

respectively. Then C is set to 600
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LOG file: 

CHECKPOINT operation: output all modified buffer blocks to the disk

To Recover from system failure:
- consult the Log 

- redo all transactions in the checkpoint  or started after the checkpoint that 
committed; 

- undo all transaction in the checkpoint not committed or started after the 
checkpoint

To recover from disk failure:

- restore database from  most recent dump

- apply the Log Recovery

CK(T1,T2)

Crash

<T1 start>
<T2 start>

<T2 commit> <T3 start>

<T3,…><T1, Z, …><T1,Y, …>
dump

<T2,X, … >
<T1 abort>

<T1, W, …>

CK(T1,T3)
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Example: concurrent transactions

Go over the steps of the recovery algorithm on the following log:

<T0 start>

<T0, A, 0, 10>

<T0 commit>

<T1 start>         /* Scan at step 1 comes up to here */

<T1, B, 0, 10>

<T2 start>                   

<T2, C, 0, 10>

<T2, C, 10, 20>

<checkpoint {T1, T2}>

<T3 start>

<T3, A, 10, 20>

<T3, D, 0, 10>

<T3 commit>

crash 
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Atomic actions

Advantages of atomic actions: 

a designer can reason about system design as

1) no failure happened in the middle of a atomic action

2) separate atomic actions access to  consistent data
(property called “serializability”, concurrency control). 
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Consensus protocols 
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Consensus problem
The Consensus problem can be stated informally as:

how to make a set of distributed processors achieve agreement 
on a value sent by one processor despite a number of failures

“Byzantine Generals” metaphor used in the classical paper by Lamport et al.,1982

L. Lamport, R. Shostak, M. Pease

The Byzantine Generals Problem

ACM Trans. on Progr. Languages and Systems, 4(3),1982

The problem is given in terms of generals who have surrounded the enemy.

Generals wish to organize a plan of action to attack or to retreat.

Each general observes the enemy and communicates his observations to the others.

Unfortunately there are traitors among generals and traitors want to influence this plan to

the enemy’s advantage. They may lie about whether they will support a particular plan and

what other generals told them.

The paper considered a synchronous system, i.e., a system in which there are known 

delay bounds for processing and communication.
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Byzantine Generals Problem

General
General

enemy

General 

General 
General

What algorithm for decision making should the generals use to reach a 

Consensus?

What percentage of liars can the algorithm tolerate and still correctly 

determine a Consensus?

Consensus: 

A: All loyal generals decide upon the same plan of actions

B: A small number of traitors cannot cause loyal generals  to adopt a bad plan

General: either a loyal general or a traitor
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Byzantine Generals Problem
Assume 

- n be the number of generals

- v(i)  be the opinion of general i (attack/retreat)

- each general i communicate the value v(i) by messangers to each other general

- each general final decision obtained by: 

majority vote among the values v(1), ..., v(n)

Absence of traitors:  

generals have the same values  v(1), ..., v(n) and they take the same decision

In presence of traitors:

to satisfy condition A

every general must apply the majority function to the same values v(1),...,v(n). But

a traitor may send different values to different generals thus generals may receive

different values

to satisfy condition B

for each i, if the i-th general is loyal, then the value he sends must be used by every

loyal general as the value v(i)
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Let us consider the Consensus problem into a simpler situation in which we have:

1 commanding general (C) 

n-1 lieutenant generals (L1, ..., Ln-1)

The Byzantine commanding general C wishes to organize a plan of action to attack

or to retreat; he sends the command to every lieutenant general Li.

There are traitors among generals (commanding general and/or lieutenant general)

Consensus: 

IC1: All loyal lieutenant generals obey the same command

IC2: The decision of loyal lieutenants must agree with the commanding general’s

order if he is loyal.

IC1 and IC2: Interactive Consistency conditions.

Note:  If the commander C is loyal then IC1 follows from IC2

Byzantine Generals Problem
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If the commanding general is loyal, IC1 and IC2 are satisfied.

If the commanding general lies  but sends the same command to lieutenants, 

IC1 and IC2 are satisfied.

Assume the commanding general  lies and sends

- attack to some lieutenant generals

- retreat to some other lieutenant generals

How  loyal lieutenant generals may all reach the same decision either to attack or 

to retreat ?

Byzantine Generals Problem

retreat

attack

…

…

…

L1

C
L4

L2

L3
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Byzantine Generals Problem

L1

C

what L4  says he received by C

what L3  says he received by C

what L2  says he received by C

decision sent by C

what L1  says he received by C

L4

L2

L3

L1= (v1, v2, v3, v4)

L2= (v1, v2, v3, v4)

L3= (v1, v2, v3, v4)

L4= (v1, v2, v3, v4)

Lieutenant generals send messages back and forth among themselves 

reporting the command received by the Commanding General.
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n = 3

no solution exists in presence of a traitor

C

L1 L2

<attack> <attack>

<C said retreat>

L2 traitor

In this situation (two different commands, one from  the commanding 

general and the other from  a lieutenant general), assume L1 must obey 

the  commanding  general. 

If L1 decides attack, IC1 and IC2 are satisfied.

If L1 must obey the lieutenant  general, IC2 is not satisfied

RULE: if Li receives different messages, L1 takes the decision he received  

by the commander

Byzantine Generals Problem
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L1 must obey the commanding general and decides attack

L2 must obey the commanding general and decides retreat

IC1 is violated

IC2 is satisfied (the comanding general is a traitor)

To cope with 1 traitor, there must be at least 4  generals

C

L1 L2

<attack> <retreat>

<C said retreat>

C traitor

<C said attack>

The situation is the same as before, and the  same rule is applied

Byzantine Generals Problem
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Byzantine Generals Problem

In the following we show the Oral Message algorithm that gives a solution when

1. the system is synchronous

2. any two processes have direct communication across a network not prone to

failure itself and subject to negligible delay

3. the sender of a message can be identified by the receiver

In particular, the following assumptions hold

A1. Every message that is sent by a non faulty process is correctly delivered

A2. The receiver of a message knows who sent it

A3. The absence of a message can be detected

Moreover, a traitor commander may decide not to send any order. In this case we assume

a default order equal to “retreat”.
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Oral Message (OM) algorithm

The Oral Message algorithm OM(m) by which a commander sends an order to n-1

lieutenants, solves the Byzantine Generals Problem for n = (3m +1) or more generals,

in presence of at most m traitors.

Function majority(v1, ..., vn-1)

_____________________________________

majority(v1, ..., vn-1)

if a majority of values vi equals v,

then

majority(v1, ..., vn-1) equals v

else

majority(v1, ..., vn-1) equals retreat

_______________________________________

Deterministic majority vote on the values

The function majority(v1, ..., vn-1) returns “retrait” if there not exists a majoirity 

among values
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The algorithm  _________________________________
Algorithm OM(0)

1. C sends its value to every Li, i{1, ..., n-1}

2. Each Li uses the received value, or the value retreat if no value is received

Algorithm OM(m), m>0

1. C sends its value to every Li,  i{1, ..., n-1}

2. Let vi be the value received by Li from C 
(vi = retreat if Li receives no value) 
Li acts as C in OM(m-1) to send vi to each  of the n-2 other lieutenants

3. For each i and j  i,  let vj be the value that Li received from Lj in step 2 using Algorithm 
OM(m-1)  (vj = retreat if Li receives no value). 
Li uses the value of majority(v1, ..., vn-1)

______________________________________

OM(m) is a recursive algorithm that invokes n-1 separate executions of OM(m-1),

each of which invokes n-2 executions of O(m-2), etc..

For m >1, a lieutenant sends many separated messages to the other lieutenants.
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The algorithm 
4 generals, 1 traitor                                 OM(1)

Point 1

- C sends the command to L1, L2, L3.

- L1 applies OM(0) and sends the command he received from C to L2 and L3

- L2 applies OM(0) and sends the command he received from C to L1and L3

- L3 applies OM(0) and sends the command he received from C to L1 and L2

Point 2

- L1: majority(v1, v2, v3)

- L2: majority(v1, v2, v3)  

//v1 command L1 says he received

//v3 command L3 says he received

- L3: majority(v1, v2, v3)
v3

C

L1 L2

<…> <…>

v1 L3

<…>

v3

v1

v2v2
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The algorithm 

4 generals, 1 traitor  n=4, m=1

C

L1 L2

<attack>
<attack>

<attack> L3

<attack>

<attack>

L1, L2 and L3 are loyal. They send the same command when applying OM(0)

IC1 and IC2 are satisfied

Li: v1 = attack,  v2 =attack,  v3 = attack 

majority(....)= attack

C is a traitor but sends the same 

command to L1, L2 ad L3

...................
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The algorithm 

C

L1 L2

<attack>
<retrait>

<attack> L3

<attack>

<retrait>

C is a traitor and sends: 

- attack to L1 and L2

- retrait to L3

L1: v1 = attack,  v2 =attack,  v3 = retrait      majority(...)= attack

L2: v1 = attack,  v2 =attack,  v3 = retrait       majority(...)= attack

L3: v1 = attack,  v2 =attack,  v3 = retrait       majority(...)= attack

IC1 and IC2 satisfied

..................

L1, L2 and L3 are loyal.

..................
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The algorithm 
A leutenant is a traitor

L3 is a traitor: 

sends retrait to L2 and attack to L1

C

L1 L2

<attack> <attack>

<attack> L3

<attack>

<retrait>

L1: v1 = attack v2 = attack,  v3 = attack           majority(...) = attack

..................

L2: v1 = attack v2 = attack,  v3 = retrait            majority(...) = attack

IC1 and IC2 satisfied

<attack>

<attack>
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The algorithm

The following theorem has been formally proved:

Theorem:

For any m, algorithm OM(m) satisfies conditions IC1 and IC2 if there are more than

3m generals and at most m traitors. Let n the number of generals: n >= 3m +1.

4 generals are needed to cope with 1 traitor;

7 generals are needed to cope with 2 traitors;

10 generals are neede to cope with 3 traitors

.......
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Byzantine Generals Problem
Original Byzantine Generals Problem

Solved assigning the role of commanding general to every lieutenant general, and 

running the algorithms concurrently

Each general observes the enemy and communicates his observations to the others

 Every general i sends the order “use v(i) as my value”

Consensus on the value sent by general i   algorithm OM

Each general combines v(1),…,v(n) into a plan of actions

 Majority vote to decide attack/retreat

General agreement among n processors, m of which could be faulty and behave in 

arbirary manners. 

No assumptions on the characteristics of faulty processors

Conflicting values are solved taking a deterministic majority vote on the values

received at each processor (completely distributed).
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Remarks

Solutions of the Consensus problem are expensive:

Assume m  be the maximum number of faulty nodes

OM(m):     

each Li waits for messages originated at C and relayed via m others Lj

OM(m) requires 

n = 3m +1  nodes

m+1 rounds

message of the size O(nm+1)  - message size grows at  each round 

Algorithm evaluation using different metrics:

number of fault processors / number of rounds / message size

In the literature, there are algorithms that are optimal for some of these aspects.
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Signed messages

The ability of the traitor to lie makes the Byzantine Generals problem difficult

 restrict the ability of the traitor to lie

A solution with signed messages:

allow generals to send unforgeable signed messages

Signed messages (authenticated messages):

- Byzantine agreement becomes much simpler

A message is authenticated if:

1. a message signed by a fault-free processor cannot be forged

2. any corruption of the message is detectable

3. the signature can be authenticated by any processors

Signed messages limit the capability of faulty-processors
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Assumptions 

A1. Every message that is sent by a non faulty process is correctly delivered

A2. The receiver of a message knows who sent it

A3. The absence of a message can be detected

Assumption A4

(a) The signature of a loyal general cannot be forged, and any alteration of the content 

of a signed message can be detected

(b) Anyone can verify the authenticity of the signature of a general

No assumptions about the signatures of traitor generals

Byzantine Generals Problem
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Signed messages 

Let V be a set of orders. The function choice(V) obtains a single order from a set of orders:

_______________________________________

For choice(V) we require:

choice() = retreat

choice(V)  = v if V consists of the single element v 

One possible definition of choice(V) is:

choice(V) = retrait if V consists of more than 1 element

_____________________________________

x:i denotes the message x signed by general i

v:j:i  denotes the value v signed by j and then 

the value v:j signed by i

General 0 is the commander

For each i,  Vi contains the set of properly signed orders that lieutenant Li 

has received so far
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Signed messages 
___________________________

Algorithm SM(m)

Vi = 

1. C signs and sends its value to every Li,  i1, ..., n-1}

2. For each i:

(A) if Li receives v:0 and Vi is empty

then Vi = v}; 

sends v:0:i  to every other Lj  

(B) if Li receives v:0:j1:...:jk and v  Vi

then Vi = Vi  v}; 

if k < m then 

sends v:0:j1:...:jk:i  to every other Lj , j j1, ..., jk}

3. For each i: when Li will receive no more msgs,

he obeys the order choice(Vi)

______________________________________

Observations: 

- Li ignores msgs containing an order vVi

- Time-outs are used to determine when no more messages will arrive

- If Li is the m-th lieutenant that adds the signature to the order, then the message is not

relayed to anyone.
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Signed messages
3 generals, 1 traitor

C

L1 L2

<attack:0>

<attack:0:1>

<retreat:0>

<retreat:0:2>

V1 = {attack, retreat} V2 = {attack, retreat}

- L1 and L2 obey the order choice({attack, retreat})

- L1 and L2 know that C is a traitor because the signature of C appears

in two different orders

The following theorem asserting the correctness  of the algorithm has 

been formally proved.

Theorem :  

For any m, algorithm SM(m) solves the Byzantine  Generals Problem if 

there are at most m traitors.

C is a traitor and sends: 

attack to L1 and L2

retrait to L3
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Remarks
Consider Assumption A1.

Every message that is sent by a non faulty process is delivered correctly

 For the oral message algorithm:

the failure of a communication line joining two processes is indistinguishable from the

failure of one of the processes

 For the signed message algorithm:

if a failed communication line cannot forge signed messages, the algorithm is

insensitive to communication line failures.

Communication line failures lowers the connectivity 

Consider Assumption A2.

The receiver of a message knows who sent it

 For the oral message algorithm:

a process can determine the source of any message that it received.

Interprocess communications over fixed lines

 For the signed message algorithm:

Interprocess communications over fixed lines or switching network
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Remarks
Consider Assumption A3:

The absence of a message can be detected

For the oral/signed message algorithm: timeouts

- requires a fixed maximum time for the generation and transmission of a message

- requires sender and receiver have clocks that are synchronised to within some fixed

maximum error

Consider Assumption A4:

(a) a loyal general signature cannot be forged, and any alteration of the content of a

signed message can be detected

(b) anyone can verify the authenticity of a general signature

- probability of this violation as small as possible

- cryptography
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Consensus in Asynchronous systems

Asynchronous distributed system:

no timing assumptions (no bounds on message delay,

no bounds on the time necessary to execute a step)

Asynchronous model of computation: attractive.

- Applications programmed on this basis are easier to port than those incorporating

specific timing assumptions.

- Synchronous assumptions are at best probabilistic:

in practice, variable or unexpected workloads are sources of asynchrony
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Impossibility result

Consensus: cannot be solved deterministically in an asynchronous distributed system

that is subject even to a single crash failure [Fisher, Lynch and Paterson 85]

 due to the difficulty of determining whether a process has actually crashed or is

only very slow.

If no assumptions are made about the upper bound on how long a message can be in

transit, nor the upper bound on the relative rates of processors, then a single

processor running the consensus protocol could simply halt and delay the

procedure indefinitely.

Stopping a single process at an inopportune time can cause any distributed protocol to

fail to reach consensus

M.Fisher, N. Lynch, M. Paterson 

Impossibility of Distributed Consensus with one faulty process. 

Journal of the Ass. for Computing Machinery, 32(2), 1985.
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Circumventing FLP 
Techniques to circumvent the impossibility result:

- Augmenting the System Model with an Oracle

A (distributed) Oracle can be seen as some component that processes can 

query. An oracle provides information that algorithms can use to guiide 

their choices. The most used are failure detectors. 

Since the information provided by these oracles makes the problem of 

consensus solvable, they augment the power of the asynchronous 

system model.

- Failure detectors

a failure detector is an oracle that provides information about the 

current status of processes, for instance, whether a given process has 

crashed or not. 

A failure detector is modeled as a set of distributed modules, one 

module Di attached to each process pi. Any process pi can query its 

failure detector module Di about the status of other processes.

T. D. Chandra, S. Toueg

Unreliable Failure Detectors for Reliable Distributed Systems.

Journal of the Ass. For Computing Machinery, 43 (2), 1996.
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Circumventing FLP: Failure detectors

Failure detectors are considered unreliable, in the sense that they provide information 

that may not always correspond to the real state of the system. 

For instance, a failure detector module Di may provide the erroneous information that 

some process pj has crashed whereas, in reality, pj is correct and running. 

Conversely, Di may provide the information that a process pk is correct, while pk has 

actually crashed.

To reflect the unreliability of the information provided by failure detectors, we say that 

a process pi suspects some process pj whenever Di , the failure detector 

module attached to pi, returns the (unreliable) information that pj has 

crashed. 

In other words, a suspicion is a belief (e.g., “pi believes that pj has crashed”) as 

opposed to a known fact (e.g., “pj has crashed and pi knows that”).

Several failure detectors use sending/receiving of messages and  time-outs as fault 

detection mechanism.
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Circumventing FLP: Randomized Byzantine 

consensus
- Random Oracle

introduce the ability to generate random values.

Processes could have access to a module that generates a random bit when 

queried

Used by a class of algorithms called randomized algorithms.

These algorithms solve consensus in a probabilistic manner. 

The probability that such algorithms terminate before some time t, goes to 1, as t 

goes to infinity. 

Almost all randomized algorithms choose to modify the Termination property, which 

becomes:

P-Termination: Every correct process eventually decides with probability 1.

Solving a problem deterministically and solving a problem with probability 1 are not 

the same

“Termination: Every correct process eventually decides.”
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Circumventing FLP: Randomized Byzantine 

consensus
All randomized consensus algorithms are based on a random operation, tossing 

a coin, which returns 

values 0 or 1 with equal probability.

These algorithms can be divided in two classes depending on how the tossing 

operation is performed: 

1) local coin mechanism in each process simpler but terminate in an 

expected exponential number of communication steps

2)  shared coin that gives the same values to all processes require an 

additional coin sharing scheme but can terminate in an expected constant 

number of steps 
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Circumventing FLP: Adding time to the model

- Adding Time to the Model

using the notion of partial synchrony

Partial synchrony model: captures the intuition that systems can behave 

asynchronously (i.e., with variable/unkown processing/ communication delays) for some 

time, but that they eventually stabilize and start to behave (more) synchronously.

The system is mostly asynchronous but we make assumptions about time properties 

that are eventually satisfied. Algorithms based on this model are typically guaranteed to 

terminate only when these time properties are satisfied.

Two basic partial synchrony models, each one extending the asynchronous model with 

a time property are:

• M1: For each execution, there is an unknown bound on the message delivery time, 

which is always satisfied.

• M2: For each execution, there is an unknown global stabilization time GST, such that 

a known bound on the message delivery time  is always satisfied from GST.
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Circumventing FLP: Wormholes
- Wormholes 

enhanced components that provide processes with a means to obtain a few simple 

privileged functions with “good” properties otherwise not guaranteed by the normal. 

Example, a wormhole can provide timely or secure functions in, respectively, 

asynchronous or Byzantine systems. 

Consensus algorithms based on a wormhole device called Trusted Timely Computing 

Base (TTCB) have been defined. 

TTCB is a secure real-time and fail-silent distributed component. Applications 

implementing the consensus algorithm run in the normal system, i.e., in the 

asynchronous Byzantine system. 

TTCB is locally accessible to any process, and at certain points of the algorithm the 

processes can use it to execute correctly (small) crucial steps. 


