
1

Software Reliability

2

Software Reliability

sw

input output

What is software reliability?

the probability of failure-free software operation for a specified

period of time in a specified environment

One of the weakest links in systems reliability is software reliability.

Even for control applications which usually have less complex

software, it is well established that many failures are results of

software bugs.

We assume that programs will not be fault-free

3

Software Reliability

sw

input outputSoftware is subject to

1. design flaws

- mistakes in the interpretation of the specification

that the software is supposed to satisfy (ambiguities)

- mistakes in the implementation of the specification:

carelessness or incompetence in writing code, or

inadequate testing

2. operational faults

incorrect or unexpected usage faults

- operational profile

operational profile: a set of alternatives of system operational scenarios

and their associated probabilities of occurrence

4

Design Faults

Given a design flaw, only some type of inputs will exercise that fault

to cause failures. Number of failures depend on how often these

inputs exercise the sw flaw

Apparent reliability of a piece of software is correlated to how

frequently design faults are exercised as opposed to number

of design faults present!!!!!

- hard to visualize, classify, detect, and correct

- closely related to human factors and the design process

- a design flaw not discovered and corrected during testing,

may possibly lead to a failure during system operation

5

Software faults and Failure regions

The input to the software is a set of variables, defining a Cartesian
space, e.g. x and y

x

y

The software contains bugs if some inputs are processed erroneously

Failure regions

(efficacy of software fault tolerance techniques depends on how
disjoint the failure regions of the versions are)

6

Faults tends to produce errors that are grouped

together

Points in the input space that cause a fault to produce errors can tend to cluster and form

regions called error crystals [Results of software error-data experiments, Finelli, NASA

Langley Research Center, 1998]

x: an input value that caused a single fault to produce an erroneous output

. : inputs that produced correct outputs

These regions are a particular concern in real-time applications where the input

variables may be slowly varying and thus triggering multiple failures because of a single fault

7

Error rates for faults in two programs
NASA studies observed widely varying error rates for the faults identified

An experiment in software reliability:Life-critical applictions, Dunham J.R, Trans. On Soft.

Engineering,1986

Three versions of a lunch interceptor condition were generated: 11 faults discovered in the

first version, 1 fault in the second version, and 19 faults in the third version

The error rate for individual faults

varies over several order of

magnitude

Error rate:

the frequency of erroneous outputs

15.250.000 program executions

Many software reliability models assume that faults contribute equally to the rate at

which a program generate erroneous outputs

8

Interaction between faults
Interaction between faults: sometimes the probability of failures is increased and at other

time faults are masked

[An experiment in software reliability, Dunham, NASA Langley Research Center, 1986]

interaction

between

two different

faults: 7 and 8

S: success of the program

F: failure of the program

Last column: number of parallel executions of the three versions of the program

9

Code coverage

- Code coverage, a metric used by code testers, indicating how

completely a test set executes a software system, influences the

reliability measure

- Several models have been proposed to determine the relationship

between the number of faults/failures and the test coverage achieved

with various distributions

10

Software reliability process overview

Software Reliability Engineering: A Roadmap, Michael R. Lyu, Future of Software Engineering(FOSE'07), 2007

Collection of data

11

12

Failure data collection

- Reliability of software can be estimated by failure data collection and

measurement during development and operational life of the software

- Failure data collection plays a crucial role for the software reliability

measurement

- Data collected includes, e.g., date of failure occurrence, nature of

failures, consequences, fault types, and fault location ..

Failure reports (FR)

Correction reports (CR)

13

14

Software Reliability models

Structural-based models used for hw reliability are not well suited for

software

- identification of individual components is very difficult

(sometimes they do not exist because the software is complex)

- the assumption of independent failures is not valid

(for example, many processes read data from the same memory)

15

SOFTWARE RELIABILITY EVOLUTION

identify periods of reliability growth and decrease

upgrades imply feature upgrades,

not upgrades for reliability.

From “Software Reliability”,

J. Pan, Carnegie Mellon University, 1999

As a software is used, design faults are discovered and corrected.

Consequently, the reliability should improve, and the failure rate should

decrease BUT corrections could cause new faults

16

➢ in the useful-life phase, software will experience a

drastic increase in failure rate each time an upgrade is made.

The failure rate levels off gradually, partly because of the defects

found and fixed after the upgrades.

➢ Even bug fixes may be a reason for more software failures,

if the bug fix induces other defects into software

➢ in the last phase, software does not have an

increasing failure rate as hardware does. In this phase,

software is approaching obsolescence; there are no

motivations for any upgrades or changes to the software.

Therefore, the failure rate will not change.

SOFTWARE RELIABILTY EVOLUTION

17

From “Software Reliability”, J. Pan, Carnegie Mellon University, 1999

Sometimes redesign or reimplementation of some modules with better

engineering approaches in a new version of the product

18

1) "defect density" models
attempt to predict software reliability from design parameters

use code characteristics such as code complexity in terms of

lines of code, number of operators, nesting loops,

number of input/output, the software development process, etc

2) "software reliability growth" models
- attempts to predict software reliability from test data

- statistically correlates failure detection data with known

probability distributions

Software Reliability models

There are basically two types of software reliability models:

19

Defect density models
Fault density: number of faults for KLOC (thousands of lines of code)

Fault density ranges from 10 to 50 for “good” software and

from 1 to 5 after intensive testing using automated tools

[Miller 1981]

Miller E.F, et al. “Application of structural quality standards to Software”,

Softw. Eng. Standard Appl. Workshop, IEEE, 1981

20

Software Reliability Growth Models

Based on the idea of an iterative improvement process of software.
Software is tested, the times between successive failures are
recorded, and faults are removed.

testing -> correction ->testing

Based on the assumption that the failure rate is proportional to the
number of bugs in the code.

Each time a bug is repaired, there are fewer total bugs in the code, the
failure rate decreases as the number of faults detected (and removed)
increases, and the total number of faults detected asymptotically
approaches a finite value.

21

Software Reliability Growth Models

Software failures are random events, because they are result
of two processes:

- the introduction of faults
- and then activation through selection of input values

These processes are random in nature:

- we do not know which bugs are in the software

- we do not know when inputs will activate those bugs

Software reliability growth models
are developed in general by probability distribution of failure times

22

Assume times between successive failures are modeled

by random variables T1, ..., Tn

T1, time to the first failure

Ti, i>1, time between failure i-1 and failure i

Reliability growth characterization

0

T1 T2 Tn

1st

failure

n-th failure

continuous time reliability growth

2nd

failure

Reliability growth: Ti <=st Tk for all i < k

Prob {Ti < x} >= Prob {Tk <= x} forall i < k and for all x

23

Number of failures: the number of failures is decreasing

Cumulative number of failure law:

the number of failure events in an interval of the form [0, tk]

is larger than the number of failure events taking place in an interval

of the same length beginning later

Random Variables N(t1), ..., N(tn)

N(ti) = cumulative number of failures between 0 and ti

N(t1)

N(t2)
N(tk)

0

Reliability growth characterization

x x xx x x… ……

24

25

Jelinski and Moranda Model
(the earliest and the most commonly used model)

Software failure rate is assumed
proportional to the current faults in the software

Assume there are N0 faults at the beginning of the testing process

- each fault is independent of others and

- equally likely to cause a failure during testing

Detected fault is removed in a negligible time and no new faults are introduced

Assume Ti has an exponential distribution. Ti follows a distribution whose
parameters depend on the number of faults remaining in the system
after the (i-1) failure

Let ti the time between (i-1)th and i-th failure

Z(ti) = = f(N-(i-1)) failure rate

26

27

28

Siewiorek, et al

Reliable Computer Systems, Prentice Hall,1992

29

Software Reliability Engineering

Software Reliability Engineering (SRE) is the

quantitative study of the operational behavior of

software-based systems with respect to user

requirements concerning reliability.

30

A global software reliability analysis method

(In Karama Kanoun, ReSIST network of Excellence Courseware “Software Reliability

Engineering”, 2008 http://www.resist-noe.org/)

31

➢ Data collection process

- includes data relative to product itself (software size, language,

workload, ...), usage environment: verification & validation

methods and failures

- Failure reports (FR) and correction reports (CR) are generated

➢ Data validation process

data elaborated to eliminate FR reporting of the same failure, FR

proposing a correction related to an already existing FR, FR

signalling a false or non identified problem, incomplete FRs or

FRs containing inconsistent data (Unusable) …

➢Data extracted from FRs and CRs

Time to failures (or between failures)

Number of failures per unit of time

Cumulative number of failures

32

➢ Trend tests

➢Control the efficiency of test activities

- Reliability decrease at the beginning of a new activity: OK

- Reliability row after reliability decrese: OK

- Sudden reliability grow CAUTION!

-

➢ Model application

➢Trend in accordance with model assumptions

➢ Descriptive statistics

➢make syntheses of the observed phenomena

➢Analyses Fault typology, Fault density of components, Failure /

fault distribution among software components (new, modified,

reused)

➢Analyses Relationships Fault density / size / complexity;

Nature of faults / components; Number of components affected by

changes made to resolve an FR .

…….

33

Due to the nature of software, no general accepted mechanisms

exist to predict software reliability

Important empirical observation and experience

Good engineering methods can largely improve software reliability

Software testing serves as a way to measure and improve software reliability

Unfeasibility of completely testing a software module:

defect-free software products cannot be assured

Databases with software failure rates are available but numbers should be

used with caution and adjusted based on observation and experience

Software Reliability

