Safety issues in medical devices

Prof. Cinzia Bernardeschi

Dipartimento di Ingegnera dell'Informazione
Università di Pisa
cinzia.bernardeschi@unipi.it

Medical devices

Interactive medical systems used in hospital and home care are controlled by software that governs key aspects of the user interface and performs key safety functions

Design faults or unexpected data entry into software designed to deliver healthcare can have catastrophic failures.

Main points:

- (i) understanding of the design challenges with user interface software for medical systems
- (ii) tools and techniques for design and analysis of software incorporated in interactive medical systems

Medical devices

A relevant paper appeared in 2006 in the IEEE Computer journal underlining the fact that

clinical demands appear to point to the need for collaborative process among manufacturers, regulators, and medical equipment users

Recalls have increased since 2006, due to more sophisticated software

Taken from:

The Biomedical Instrumentation & Technology journal

Software-Related Recalls: An Analysis of Records

Lisa K. Simone (biomedical and software engineer with the Center for Devices and Radiological Health at the

U.S. Food and Drug Administration)

Year	Total Recalls	Software- Related Recalls	Percent
2005	604	84	13.9%
2006	663	119	17.9%
2007	638	119	18.7%
2008	847	192	22.7%
2009	782	146	18.7%
2010	981	147	15.0%
2011	1,277	315	24.7%

Percentage of Recalls Related to Software

Medical devices

User interface in medical devices:

if medical systems are to be used safely, it is important that user interface software is designed to make the device easy to use and mistakes made by users are corrected

The work presented has been developed within the CHI+MED research project (http://www.chi-med.ac.uk/), and in collaboration with the Center for Devices and Radiological Health of the US Food and Drug Administration (CDRH/FDA).

CHI+MED - Computer-Human Interaction for Medical Devices, EPSRC project EPSRC - *Engineering and Physical Sciences Research Council* (the UK's main agency for funding research in engineering and the physical sciences)

User interface design issues in medical devices

Paolo Masci

(p.m.masci@qmul.ac.uk)

School of Electronic Engineering and Computer Science

Queen Mary University of London

University College London Hospital July 7, 2015

Focus of this talk

Demonstration of user interface issues with medical devices in use at UCLH and in other UK hospitals

A recorded video of the demonstration is available on YouTube "Medical Device Training - Design Issues in Medical User Interfaces" https://www.youtube.com/watch?v=T0QmUe0bwL8

The nature of the identified issues

The cause: software design flaws

What happens:

- user input erroneously discarded
- inappropriate feedback
- unexpected device modes

Potential consequences: serious use errors (for example, missing decimal point errors when entering values)

Demonstration of identified issues

Instructions from the user manual

How to enter infusion rate (and other infusion parameters):

In the Main Menu, open the rate with and set it with <a>.

sequence of keys: right left down different behaviour

An accurate specification of the device behaviour

Obtained in our labs by reverse-engineering the real device

Ref: "A case study on the predictability of drug infusion pumps", P. Masci et al, in Innovations in Systems and Software Engineering, Springer-Verlag London, 2013

Similar data entry, different behaviour

Pump 1

Pump 2

Example: entering 950mL

Input Key Sequence

- 1. Left
- 2. Up 5 Times
- 3. Left
- 4. Down

Recommendations

- Be extremely mindful of range values
 - the device may silently change mode of operation in different value ranges
- Keep in mind that you may accidentally overshoot the legal range even if you are not entering extremely high or low values
 - because of different software configurations

Ignored values

Values are ignored without warning when input key sequences are not terminated with "OK"

Ventilators have similar problems

Datex-Ohmeda

mindray Tanggar

Mindray

Transfer errors: similar devices have opposite behaviours

 Values are automatically accepted even if the input key sequence is not terminated with "ok"

Recommendations

- Avoid shortcuts when confirming entered values
 - always submit values to complete data entry
 - don't rely on automatic confirmation
- Keep in mind that multiple steps may be required to confirm values
 - some devices require "confirm" and then "accept"

Related issue: Timeouts

If the user edits a value and pauses for a few seconds before confirming the new value...

...then the device erroneously discards the new value without warning.

We observed and reproduced the same problem in different types of devices

Patient monitor

Radical 7

Ventilators

Datex-Ohmeda

Draeger Apollo Infinity C500

Recommendations

- Keep in mind that data entry expires because of inactivity
 - some device silently discard after a timeout
 - other devices silently confirm after a timeout

Ignored decimal point

The decimal point is erroneously ignored

The key sequence

1 0 0 1

is registered as 1,001

The decimal point is erroneously ignored

The key sequence

is registered as 1,001 (the value is fortunately rejected in this case because the pump configuration limits the rate value to 999 mL per hr)

Recommendation

- Be extremely mindful of different precision limits for different value ranges
 - many infusion pumps reduce precision of values greater than 100,
 e.g., the device may silently ignore decimal point key presses
 - other devices may have different pitfall values

Related issue: ill-formed values

Mistyping and Misreading numbers

Fractional number without leading zero

(could be easily misread as integer value)

Integer number with leading zero

(potentially misread as a fractional value)

This infusion pump accepts integer values with leading zeros (e.g., 089)

This behaviour can lead to missing decimal point errors

Recommendation

- Don't rely on the "leading zero"
 - integer values may erroneously start with "0"
 - fractional values may erroneously start with "•"

Additional user interface issues

Viewing angle

Similar problems can be reproduced in any device equipped with seven-segments displays

Infusion pumpsAlaris PC

Phacoemulsifiers
Alcon Everest

Infant warmers
Ohmeda Panda

Patient monitors

Datascope Accutorr Plus

Recommendation

- Never trust seven-segments displays
 - you may read different values from different angles

Inconsistent use of soft buttons

Select an Option

Select an Option

DISABLED

Phacoemulsifiers have similar problems

Increase/Decrease values

Increase/Decrease values

Select an Option

Increase/Decrease values

Scroll options

Wrong feedback

Our work with Regulators and Hospitals

 Creating the basis for a new international standar for medical software

 Will enable a more precise and uniform evaluation of usability, safety, and security of medical devices

Improving pre-market review process

 FDA & MHRA are using our results and trialling our methods on premarket reviews

Informing hospitals

- To improve purchasing of new medical devices
- To raise awareness during training sessions

Informing manufacturers

To fix existing issues, and identify new potential issues in advance

www.chi-med.ac.uk

- Publications on device design
- News on patient safety
- Training videos

Paolo Masci

(<u>p.m.masci@qmul.ac.uk</u>) Queen Mary University of London

