
SISTEMI	EMBEDDED

Instruction	Set	Architecture:	RISC/CISC
Addressing	Modes
Assembly	Language

Federico	Baronti Last	version:	20160308



Instructions	and	Sequencing
• Instruction	Set	Architecture	(ISA)	can	be	seen	as	
the	specifications	of	a	processor
– ISA	affects	processor	performances	(RISC,	CISC,	ASIP*)
– Possible	different	implementations	of	the	same	ISA

• Instructions	for	a	computer	must	support:
– data	transfers	to	and	from	the	memory
– arithmetic	and	logic	operations	on	data
– program	sequencing	and	control
– input/output	transfers

• Let’s	start	by	introducing	some	notation

2* Application-Specific	 Instruction	set	Processor



Register	Transfer	Notation	(1)
• Register	transfer	notation	(RTN)	is	used	to	describe	
hardware-level	data	transfers	and	operations

• Source/Destination	can	be	either	processor	registers	
(e.g.	R0,	R1,…)	or	memory	locations	(usually	memory	
addresses	are	represented	by	symbols,	such	as	LOC,	
VARx,	A,	B,	...)

• […] to	denote	the	content	of	a	location
• ← to	denote	transfer	to	a	destination
• Example:			R2	← [LOC]

(transfer	from	memory	location	LOC	to	register	R2)

3



Register	Transfer	Notation	(2)

• RTN	can	be	extended	to	show
arithmetic	operations	involving	locations

• Example:			R4	← [R2]	+ [R3]
(add	the	contents	of	registers	R2	and	R3,

place	the	sum	in	register	R4)
• Right-hand	expression	always	denotes	a	value,	
left-hand	side	always	names	a	location	(i.e.,	
specifies	its	address)

4



Assembly-Language	Notation	(1)

• RTN	shows	data	transfers	and	arithmetic	(useful	
to	describe	the	behavior	of	an	instruction)

• Another	notation	is	needed	to	represent
machine	instructions	&	programs	using	them

• Assembly	language	is	used	for	this	purpose
• The	two	preceding	examples	using	RTN	can	be	
related	to	the	assembly-language	instructions:

Load R2,	LOC
Add R4,	R2,	R3

5



Assembly-Language	Notation	(2)

• An	instruction	specifies	the	requested	
operation	and	the	operands	that	are	involved

• We	will	use	English	words	for	the	operations	
(e.g.,	Load,	Store,	and	Add)

• Commercial	processors	use	mnemonics,
usually	abbreviations	(e.g.,	LD,	ST,	and	ADD)

• Mnemonics differ	from	processor	to	processor

6



RISC	and	CISC	Instruction	Sets

• Nature	of	instructions	distinguishes	computer
• Two	fundamentally	different	approaches
– Reduced	Instruction	Set	Computers	(RISC)	have	
one-word	instructions	and
require	arithmetic	operands	to	be	in	registers

– Complex	Instruction	Set	Computers	(CISC)
have	multi-word	instructions	and
allow	operands	directly	from	memory

7



RISC	Instruction	Sets	(1)
• Each	RISC	instruction	occupies	a	single	word
• A	load/store	architecture	is	used,	meaning:
– only	Load	and	Store	instructions	are	used
to	access	memory	operands

– operands	for	arithmetic/logic	instructions	
must	be	in	registers,	or	one	of	them
may	be	provided	explicitly	in	the	instruction	
word	(Immediate operand)

– Load				proc_register,	mem_location
– Addressing	mode	specifies	actual	memory	
location

8



RISC	Instruction	Sets	(2)

• Consider	high-level	language	statement:
C	= A	+ B;

• A,	B,	and	C	correspond	to	memory	locations
• RTN	specification	with	these	symbolic	names:

C	← [A]	+ [B]
• Steps	involved:	retrieve	contents	of	locations	
A	and	B,	compute	sum,	and	transfer	result	to	
location	C

9



RISC	Instruction	Sets	(3)

• Sequence	of	simple	RISC	instructions	for	task	
C	=	A	+	B:

Load R2,	A
Load R3,	B
Add R4,	R2,	R3													(Add	R3,	R2,	R3)
Store R4,	C																						(Store	R3,	C)

• Load	instruction	transfers	data	to	register
• Store	instruction	transfers	data	to	the	
memory.	Store	uses	the	reverse	operand	
order	compared	to	the	Load	or	Add	
instructions

10



11

Assumptions:
• Memory	is	32-bit	word	
length	and
byte-addressable

• Load/Store	instructions	
have	the	desired	operand	
address	specified	directly
• Limitations	on	usable	

memory	locations	for	
variables	because	of	RISC	
single	word	instructions

• Need	for	alternative	
addressing	modes



Instruction	Execution/Sequencing

• How	is	the	program	executed?
• Processor	has	program	counter	(PC)	register
• Address	i for	first	instruction	placed	in	PC
• Control	circuits	fetch	and	execute	instructions,	
one	after	another	→ straight-line	sequencing

• During	execution	of	each	instruction,
PC register	is	incremented	by	4

• PC content	is	i + 16	after	Store	is	executed

12



13

Sum	n numbers	stored	in	
memory	at	consecutive	
locations	(array)	starting	at	
location	address	NUM1
• n is	stored	at	location	
address	N

• Result	needs	to	be
stored	at	location	address	
SUM

• Conditional	branching
• Register	indirect	
addressing	mode

LOOP



Branching

• Branches	that	test	a	condition	are	used	in	
loops	and	various	other	programming	tasks

• One	way	to	implement	conditional	branches
is	to	compare	the	contents	of	two	registers,	
e.g.,

Branch_if_[R4]>[R5] LOOP
• In	generic	assembly	language	with	mnemonics	
the	instruction	above	might	actually	appear	as

BGT R4,	R5,	LOOP
14



Generating	Memory	Addresses
• Loop	must	obtain	“Next”	number	at	each	loop	
iteration

• Load	instruction	cannot	contain	full	address	since	
address	size	(32	bits)	= instruction	size

• Also,	Load	instruction	itself	would	have	to	be	
modified	in	each	pass	to	change	address

• Instead,	use	register	Ri for	address	location
– Initialize	Ri to	NUM1	and	increment	it	by	4	inside	the	
loop

– This	method	works	well	for	accessing	the	elements	of	
an	array

15



Addressing	Modes	(1)

• Programs	use	data	structures	to	organize
the	information	used	in	computations

• High-level	languages	enable	programmers
to	describe	operations	for	data	structures

• Compiler	translates	into	assembly	language
• Addressing	modes	provide	compiler	with	
different	ways	to	specify	operand	locations

• Consider	modes	used	in	RISC-style	processors

16



Addressing	Modes	(2)

17



Addressing	Modes	(3)

• RISC-style	instructions	have	a	fixed	size,	hence
immediate,	absolute and	indexmode	
information	limited	to	16	bits

• Usually	sign-extended	to	full	32-bit	
value/address

• immediate,	absolute and	indexmode	is	
therefore	limited
to	a	subset	of	the	full	32-bit	address	space

18



Addressing	Modes	(4)

19



32-bit	Immediate	Values
• To	construct	32-bit	immediates or	addresses,	use	
two	instructions	in	sequence:

OrHigh R4,	R0,	#0x2000
Or R4,	R4,	#0x4FF0

• R0	always	contains	0
• Result	is	NUM1=0x20004FF0	in	register	R4
• Useful	pseudoinstruction for	above	sequence:

Move(ImmediateAddress)				R4,	#NUM1
– Assembler	substitute	the	pseudoinstructionwith	
OrHigh &	Or	and	appropriate	16-bit	values	for	each	
instruction

20



Assembly	Language

• Mnemonics	(LD/ADD	instead	of	Load/Add)	
used	when	programming	specific	computers

• The	mnemonics	represent	the	OP	codes
• Assembly	language	is	the	set	of	mnemonics	
and	rules	for	using	them	to	write	programs

• The	rules	constitute	the	language	syntax
• Example:	suffix	‘I’	to	specify	immediate	mode

ADDI			R2,	R3,	5				(instead	of	#5)

21



Assembler	Directives

• Other	information	also	needed	to	translate	
source	program	to	object	program

• How	should	symbolic	names	be	interpreted?
• Where	should	instructions/data	be	placed?
• Assembler	directives	provide	this	information
• ORIGIN	defines	instruction/data	start	position
• RESERVE	and	DATAWORD	define	data	storage
• EQU	associates	a	name	with	a	constant	value

22



23



Program	Assembly	&	Execution

• From	source	program,	assembler generates	
machine-language	object	program

• Assembler	uses	ORIGIN	and	other	directives
to	determine	address	locations	for	code/data

• For	branches,	assembler	computes		±offset
from	present	address	(in	PC)	to	branch	target

• Loader places	object	program	in	memory
• Debugger can	be	used	to	trace	execution

24



Example	Program:	Digit	Packing

• Memory	contains	two	ASCII	decimal	digits	
starting	at	address	LOC.	We	want	to	extract	
the	BCD	of	the	two	decimal	digits	and	“pack”	
them	to	a	byte	to	be	stored	at	memory	
location	PACKET

25



26

LoadByte R4,	1(R2)



RISC	Summary
• Single	word	instructions
• Operands	of	arithmetic	
and	logic	operations	in	
REGISTERS	only

• Load/store	architecture	
(no	memory	to	memory	
transfers)

• Simple	addressing	
modes

27



CISC	Instruction	Sets	(1)

• Not	constrained	to	load/store	architecture
• Instructions	may	be	larger	than	one	word
• Typically	use	two-operand	instruction	format,	
with	at	least	one	operand	in	a	register

• Implementation	of	C	= A	+ B	using	CISC:
Move Ri,	A
Add Ri,	B
Move C,	Ri

28



CISC	Instruction	Sets	(2)

• Move	instruction	equivalent	to	Load/Store
• But	also	can	transfer	immediate	values
and	possibly	between	two	memory	locations

• Arithmetic	instructions	may	employ
addressing	modes	for	operands	in	memory:

Subtract LOC,	Ri
Add Rj,	16(Rk)

29



Additional	Addressing	Modes	(1)

• CISC	style	has	other	modes	not	usual	for	RISC
• Autoincrementmode:	effective	address	given	
by	register	contents;	after	accessing	operand,	
register	contents	incremented	to	point	to	next

• Useful	for	adjusting	pointers	in	loop	body:
Add SUM,	(Ri)+
MoveByte (Rj)+,	Rk

• Increment	by	4	for	words,	and	by	1	for	bytes

30



Additional	Addressing	Modes	(2)
• Autodecrementmode:	before	accessing	operand,	
register	contents	are	decremented,	then	new	
contents	provide	effective	address

• Notation	in	assembly	language:
Add Rj,	−(Ri)

• Use	autoinc.	&	autodec.	for	stack	operations:
Move				−(SP),	NEWITEM (push)
Move				ITEM,	(SP)+ (pop)

• SP	is	the	Stack	Pointer	REGISTER,	NEWITEM	and	
ITEM	are	two	generic	REGISTERS

31



Condition	Codes

• Processor	can	maintain	information	on	results	
to	affect	subsequent	conditional	branches

• Results	from	arithmetic/comparison	&	Move
• Condition	code	flags	in	a	status	register:

N		(negative) 1	if	result	negative,	else	0
Z			(zero) 1	if	result	zero,	else	0
V			(overflow)			1	if	overflow	occurs,	else	0
C			(carry) 1	if	carry-out	occurs,	else	0

32



Branches	using	Condition	Codes

• CISC	branches	check	condition	code	flags
• For	example,	decrementing	a	register	causes		
N	and	Z	flags	to	be	cleared	if	result	is	> zero

• A	branch	to	check	logic	condition	N	+ Z	= 0:
Branch>0 LOOP

• Other	branches	test	conditions	for	<,	=,	≠, ≤,	≥
• Also	Branch_if_overflow and	Branch_if_carry
• Consider	CISC-style	array-summing	program

33



34



RISC	vs	CISC	Summary
• Single	word	instructions
• Operands	of	arithmetic	

and	logic	operations	in	
REGISTERS	only

• Load/store	architecture	
(no	memory	to	memory	
transfers)

• Simple	addressing	modes
• Faster	instruction	

execution
• Larger	size	programs

• Instructions	may	span	
multiple	words

• Operands	of	of	arithmetic	
and	logic	operations	may	
be	in	memory

• Move	instructions	wider	
scope	than	load/store

• More	powerful	
addressing	modes

• Smaller	size	programs
• Slower	instruction	

execution

35

RISC	reduces	hardware	complexity	at	the	expense	of	the	
software	complexity.	Need	for	sophisticated	compilers.



Encoding	of	Machine	Instructions

• Assembly-language	instructions	express	the	
actions	to	be	performed	by	processor	circuitry

• Assembler	converts	to	machine	instructions
• Three-operand	RISC	instructions	require
enough	bits	in	single	word	to	identify	registers

• 16-bit	immediatesmust	be	supported
• Instruction	must	include	bits	for	OP	code
• Call	instruction	also	needs	bits	for	address

36



37



References

• C.	Hamacher,	Z.	Vranesic,	S.	Zaky,	N.	Manjikian
"Computer	Organization	and	Embedded	Systems,”	
McGraw-Hill	International	Edition
– Cap.	II	all	except	sections	2.5,	2.6	and	2.7

38


