
SISTEMI	EMBEDDED

Computer	Organization
Memory	Hierarchy,	Cache	Memory

Federico	Baronti Last	version:	20160524



Memory	Hierarchy

• Ideal	memory	is	
fast,	large,	and	
inexpensive

• Not	feasible	with	
current	memory	
technology,	so	use	
memory	hierarchy

• Exploits	program	
behavior	(locality	
of	reference)	to	
make	it	appear as	
though	memory	is	
on	average	fast	and	
large



Caches	and	Locality	of	Reference

• The	cache	is	between	processor	and	memory
• Makes	large,	slow	main	memory	appear	fast
• Typical	program	behavior	involves	executing	
instructions	in	loops	and	accessing	data	array

• Effectiveness	is	based	on	locality	of	reference
– Temporal	locality:	instructions/data	that	have	
been	recently	accessed	are	likely	to	be	again

– Spatial	locality:	nearby instructions	or	data	are	
likely	to	be	accessed	after	current	access



More	Cache	Concepts
• To	exploit	spatial	locality,	transfer	cache	block	
(or	line)	with	multiple	adjacent	words	from	
memory
– Later	accesses	to	nearby	words	are	fast,	provided	
that	cache	still	contains	the	block

• Mapping	 function determines	where	a	block	
from	memory	is	to	be	located	in	the	cache
– Direct	or	Associative	mapping

• When	cache	is	full,	replacement	algorithm
determines	which	block	has	to	be	removed	
from	the	cache



Cache	Operation

• Processor	issues	Read	and	Write	requests
as	if	it	were	accessing	main	memory	directly

• But	control	circuitry	first	checks	the	cache
– If	desired	information	is	present	in	the	cache,		a	
read or write hit occurs

• For	a	read hit,	main	memory	is	not	involved;	
the	cache	provides	the	desired	information

• For	a	write hit,	there	are	two	approaches:
–Write-back	or	Write-through



Handling	Cache	Writes
• Write-through	protocol:	update	cache	&	memory.	
Memory	is	always	updated.

• Write-back	protocol:	only	update	the	cache;	
memory	updated	later	when	block	is	replaced	
– Write-back scheme	needs	modified or	dirty	bit to	
mark	blocks	that	are	updated	in	the	cache	and	need	
to	be	written	in	the	main	memory	when	they	are	
replaced

• If	same	location	is	written	repeatedly,	then	write-
back is	much	better	than	write-through
– Block	memory	update	is	often	more	efficient,
even	if	writing	back	unchanged	words



Handling	Cache	Misses

• If	desired	information	is	not	present	in	cache,	
a	read or	write miss occurs

• For	a	read miss,	the	block	with	desired	word	is	
transferred	from	main	memory	to	the	cache

• For	a	write miss	under	write-through protocol,	
information	is	written	to	the	main	memory

• Under	write-back protocol,	first	transfer	block	
containing	the	addressed	word	into	the	cache.	
Then	overwrite	specific	word	in	cached	block



Mapping	Functions
• Block	of	consecutive	words	in	main	memory	
must	be	transferred	to	the	cache	after	a	miss	

• The	mapping	function determines	the	location	
of	a	block	in	the	cache

• Three	mapping	functions:
– Direct,	Associative	and	Set	Associative	Mapping

• Let’s	consider	the	following	scenario:
– Cache	with	128	blocks	of	16	words
– Main	memory	with	64	K	words	(4	K	blocks),	word-
addressable,	so	16-bit	address



Direct	Mapping

• Simplest	approach	uses	a	fixed	mapping:
mem.	block	j→ cache	block(	jmod	128	)
• Only	one	unique	location	for	each	mem.	
block
– Two	blocks	may	contend	for	same	location	
even	if	the	cache	is	not	fully	utilized
–New	block	always	overwrites	previous	block



Address	is	divided	into	3	fields
tag,	block	or	line	index,	word	(or	offset)

Cache	with	128	blocks	of	16	words
Main	memory	with	64	K	words	(4	K	blocks)
Word-addressable	memory,	so	16-bit	
address

Direct	Mapping



Associative	Mapping

• Full	flexibility:	locate	block	anywhere	in	cache
• Block	field	of	address	no	longer	needs	any	bits
• Tag	field	is	enlarged	to	encompass	those	bits
• Larger	tag	stored	in	cache	with	each	block
• For	hit/miss,	compare	all	tags	simultaneously	
in	parallel	against	tag	field	of	given	address

• This	associative	 search increases	complexity
• Flexible	mapping	also	requires	appropriate	
replacement	algorithm	when	cache	is	full



Cache	with	128	blocks	of	16	words
Main	memory	with	64	K	words	(4	K	blocks)
Word-addressable	memory,	so	16-bit	
address

Associative	Mapping



Set-Associative	Mapping
• Combination	of	direct	&	associative	mapping
• Group	blocks	of	cache	into	sets
• Block	field	bits	map	a	block	to	a	unique	set
• But	any	block	within	a	set	may	be	used
• Associative	search	involves	only	tags	in	a	set
• Replacement	algorithm	is	only	for	blocks	in	set
• Reducing	flexibility	also	reduces	complexity
• k blocks/set	→	k-way	set-associative	cache
– Direct	Mapping	corresponds	to	1-way
– Associative	Mapping	corresponds	to	all-way



Cache	with	128	blocks	of	16	words
Main	memory	with	64	K	words	(4	K	blocks)
Word-addressable	memory,	so	16-bit	
address

2-way	Associative	Mapping



Stale	Data
• Each	block	has	a	valid	bit,	initialized	to	0
• No	hit	if	valid	bit	is	0,	even	if	tag	match	occurs
• Valid	bit	set	to	1	when	a	block	placed	in	cache
• When	power	is	turned	on,	all	valid	bits	are	set	to	0
• Because	of	DMA,	main	memory	can	change	w/o	
read	or	write	performed	by	the	processor
– Invalid	a	cache	block	when	corresponding	block	in	
memory	is	modified	by	DMA

– If	write-black	transfers	block	from	cache	to	memory	
before	starting	DMA	that	has	such	a	block	as	source.	
This	action	can	be	achieved	by	flushing	the	cache.



LRU	Replacement	Algorithm
• Replacement	is	trivial	for	direct	mapping,
but	needs	a	method	for	associative	mapping

• Consider	temporal	locality	of	reference	and	use	a	least-
recently-used (LRU) algorithm

• For	k-way	set	associativity,	each	block	in	a	set	has	a	
counter	ranging	from	from	0 to	k-1,	which	is	updated	
w/	the	following	 rules:
– Hitting	on	a	block	clears	its	counter	value	to	0;
others	originally	lower	in	set	are	incremented,	and	all	the	
others	remain	unchanged

– When	a	miss	occurs	and	the	set	is	not	full,	the	counter	of	
the	new	block	is	set	to	0 and	all	the	others	are	increased	
by	one

– When	a	miss	occurs	and	the	set	is	full,	replace	the	block	w/	
counter	=	k-1,	set	its	counter	to	0 and	increment	by	one	all	
the	other	counters



Hit	Rate	and	Miss	Penalty
• Performance	of	a	memory	hierarchy	are	determined	by	the	hit	

rate and	the	miss	penalty
• Hit	rate depends	on	the	cache	size	and	its	organization	

(mapping	function,	block	size)
• Miss	penalty includes	the	time	to	detect	the	miss,	transfer	one	

block	from	the	main	mem.	to	the	cache	and	eventually	the	
requested	word	to	the	proc.	It	depends	on	the	main	memory	
access	time,	which	is	usually	much	larger	for	the	first	word	of	
the	block	than	for	the	remainder	ones.
– Let’s	assume	that	the	cache	access	time	is	1	clock	cycle,	the	access	

for	the	first	word	in	mem.	is	Nfirst =	7	cycle and	for	the	following	
words	Nmore =	1	cycle,	and	the	block	size	B =	8	word.

– Then,	the	miss	penalty	
Nmiss =		(1	+	1x Nfirst +	(B-1)x Nmore +	1)	– 1=15,
where	1	one	cycle	is	for	detecting	the	cache	miss	and	another	for	
providing	the	requested	word	to	the	proc.



Effect	on	Pipelining	Performance
• Assume	that:	freq.	of	cache	misses	during	fetch
pmiss-fetch =	5	%,	freq.	of	cache	misses	during	mem	
access	pmiss-mem =	10	%,	freq.	of	Load	and	Store	instr.	
pLD-ST =	30	%.	Then,	:
– δcache-miss =	Nmiss (pmiss-fetch +	pLD-ST x pmiss-mem)

=	15x(0.05	+	0.03)	=	1.2
– F =	R/2.2	=	0.45R

• W/o	cache,	i.e.,	pmiss-fetch =	100	%	and	pmiss-mem=	100	%,	
mem	access	time	penalty	is	Nfirst -1	cycle
– δmem =	(Nfirst -1)x(1	+	pLD-ST)	=	7.8
– F =	R/8.8	=	0.11R

• Cache	improves	performance	by	a	factor	of	4.



References

• C.	Hamacher,	Z.	Vranesic,	S.	Zaky,	N.	Manjikian
"Computer	Organization	and	Embedded	Systems,”	
McGraw-Hill	International	Edition
– Chapter	VIII:	8.5	– 8.7.1


