SISTEMI EMBEDDED
AA 2013/2014

JTAG CIRCUITRY
JTAG DEBUG MODULE
JTAG-UART PERIPHERAL

Federico Baronti

Joint Test Action Group (JTAG) (1)

e Established in 1985 to develop a method to test
populated PCBs

— Defines a way to access IC pins organized in a
boundary-scan

— Boundary Scan Test (BST) checks PCB connections
Boundary-Scan Cell

Serial . Serial
Data In } //C Pin Signal » Data Out
/rﬁ /)
Core Core
Logic Logic
____J ____J

Tested
JTAG Device 1 Connection JTAG Device 2

Joint Test Action Group (JTAG) (2)

* The method was standardized in 1990 as
IEEE 1149.1 (Standard Test Access Port and
Boundary-Scan Architecture)

— A 1994 addendum defined the Boundary Scan
Description Language (BSDL)

— BSDL is a subset of VHDL, which provides a syntax
for describing the features of an |IEEE Std. 1149.1
BST-capable device

Joint Test Action Group (JTAG) (3)

* Today, JTAG is widely used also as
communication means to access IC sub-blocks:

— For debugging purposes in processors

— For programming purposes in processors, CPLDs,
FPGASs

e JTAG acts as a communication interface to
read/write registers in a serial way

— Instruction register and data registers
— Capture, shift, update phases (TAP controller)

JTAG interface
Test Acces Port (TAP)

"""""""""""""""" e ey
TMS (Test Mode Select) ! i
1 1
ITAG B (Test Clock) i i
Adapter i i
TDI (Test Data In) i i
1 1
TDO (Test Data Out) i :
t=== TRST “ TRST
TMS TMS

TCK

Specific registers:

JTAG circuitry (in Altera devices)

TDI

T™MS—P»
TCLK—p»

TRST (1)—»>

D>

TAP
Controller

UPDATEIR

CLOCKIR

SHIFTIR

UPDATEDR > Data
CLOCKDR |0
SHIFTDR v .
|

* [SP: In-System Programmability
* |CP: In-Circuit Reconfigurability

Instruction Decode

Registers

............ | NS

Bypass Register

B
>

Boundary-Scan Register (4)

Jemo

JTAG signals (1)

* TDI (Test Data In): Serial input pin for instructions as
well as (test and programming) data. Bits are shifted in
on the rising edge of TCK.

 TDO (Test Data In): Serial data output pin for
instructions as well as (test and programming) data.
Bits are shifted out on the falling edge of TCK. This pin

is tri-stated if bits are not being shifted out of the
device.

 TMS (Test Mode Select): Input pin that provides the
control signal to determine the transitions of the TAP
controller state machine. Transitions within the state
machine occur at the rising edge of TCK (TMS is
evaluated on the rising edge of TCK). Therefore, TMS
must be set up before the rising edge of TCK.

JTAG signals (2)

 TCK (Test Clock input): The clock input to the BST
circuitry. Some operations occur at the rising
edge, while others occur at the falling edge.

 TRST (Test Reset input): Active-low input to
asynchronously reset the boundary-scan circuit.
(TRST is optional according to IEEE Std. 1149.1).
This pin should be driven low when not in
boundary scan operation and for non-JTAG users
the pin should be permanently tied to GND.

Boundary Scan Cell (BSC) (1)

— OO0} eee»{0D

T Each peripheral

* element is either an
;
[s]
[s]

I/0 pin, dedicated
input pin, or
dedicated
configuration pin.

Internal Logic

SDO

\

PDI

PDO

S [Enn]s S [Ean] IS S [Wan

TAP Controller T

SDI
T SR S R

DI T™S TCK TRST(1) TDO

PDI

Boundary Scan Cell (BSC) (2)

O Functional
MODE mode
1 Test mode
0
SDO 1 PDO
SHIFTDR
0 D Q D Q
1
—P
CLOCKDR UPDATEDR
SDI

Each BSC can:

Capture data on its parallel input PDI

Update data on its parallel output PDO
Serially shift SDI to SDO

Behave transparently PDO = PDI

Boundary Scan Cell (BSC) (3)

INJ
SDO
@) PIN_IN
o0
= ;‘1
— D Qr-e——D Q 1
c
[
Q
)
c
- OEJ
e 0 PIN_OE
OUTJ) D Qre D Q 0 1
o L 1

e 3-bit BSC for each

PIN_OUT
P ' 0 Lio\l _ {g-& Pin
(bidirectional) I/O tQ’ o eréeTe a 'ld, Output

of a Cyclone FPGA Buffer
* PDI: OUTJ, OEJ,

Capture Update
Pl N_| N Registers Registers
* PDO: PIN_OUT, SDI SHIFT UPDATE
PIN_OE, INJ cLOCK oz

Global Signals
MODE

TMS =1 | SELECT IR_SCAN

SELECT_DR_SCAN

SELECT

CAPTURE

Finite State Machine
(FSM) with 16 states

SHIFT /
PAUSE

T™S = 1

UPDATE_IR U P D AT E

TMS =0

Standard instructions
Instruction | Selected Data Register (Mode) |

Mandatory
Bypass Bypass (1-bit bypass register between
TDI and TDO)
Extest Boundary scan (Test mode)
Sample/Preload Boundary scan (Functional mode)
Optional Altera FPGAs
Idcode IDCODE register
Usercode USERCODE register
Clamp Bypass (I/O hold to the state defined by

the boundary scan register)

HighZ Bypass (I/0 in Hi-2)

Sample/Preload instructions

Capture phase

OEJ

REI

ouTJ

REi

D Q L D Q
— —P
OEJ
D Qe D Q
' | '
ouTJ
D Qe D Q
D | aukd
Capture Update
Registers Registers
SDI SHIFT UPDATE
CLOCK

MODE

MODE =0

Shift and Update phases

INJ

gaf

D Q -1— D Q
—P —P
0
D Q = D Q
o au
0
—D *—>
Capture Update
Registers Registers
SDI SHIFT UPDATE
CLOCK

MODE

Extest instruction

Capture phase

Shift and Update phases

N

OEJ

ouTJ

SDI

Capture
Registers

SHIFT
CLOCK

Update
Registers

UPDATE

MODE

INJ

R

—P —P
OEJ
D Q & D Q
L g L e
ouTJ
D Q e D Q
> *+>
Capture Update
Registers Registers
MODE _ 1 SDI SHIFT UPDATE

CLOCK

MODE

JTAG Debug Module (1)

* Provides on-chip emulation to control the processor
remotely from a host PC. Software debugging tools
communicate with the JTAG debug module and
make it possible to:

— Download programs to memory

— Start and stop execution JTAG Debug
: : MUCEe
— Set breakpoints and watchpoints g
. Debug |
— Analyze registers and _HestPC S Data; Avalon Switch Fabric
® :
memory Altera Y o £ [T
Download g o Hub le--.
— Collect real-time TG Terminal} =2 44 S 5

Character . Avalon Port | Avalon Port
Stream

Lo JTAG On-Chip
UART Memory

execution trace data

Altera FPGA

JTAG Debug Module (2)

* Piece of hardware (implemented with FPGA logic
and memory resources) placed between the JTAG
circuitry and the processor

 The JTAG debug module takes control of the
processor by asserting a hardware break or
inserting a break instruction in the program
memory to be executed

— A break causes the software routine located at the
brake address to be executed

— The break address is chosen when the processor is
generated

JTAG-UART Core

* Allows characters to be serially transmitted
between a Nios processor and a host PC using
the JTAG circuitry present in the FPGA and a
download cable such as USB-Blaster

* Hides the complexity of the JTAG circuitry

* |s supported by HAL system library

— Character-mode generic device model
(Unix-like routines: open, read, write, ...)

— C standard |/O functions (printf, getchar,...)

JTAG-UART Core block diagram

JTAG Connection to Host PC

/‘_’/R

Altera FPGA

JTAG UART Core

Controller

Registers

Data | Write FIFO JTAG
Hub

Avalon-MM slave -t Interface | ==t JTAG
interface Control 4—| Read FIFO | < Hub
to on-chip
logic PRLLS I

Other Nodes Using JTAG Interface
(for example, another JTAG UART)

. Built-In Feature of Altera FPGA
Automatically Generated by Quartus Il Software

Host-Nios Il processor connection

Altera FPGA

JTAG Nios Il

Host PC Debug Processor
Module

DEGUgEET A M
E
c | [T |
- PC System Interconnect Fabric
JTAG |Pownload Interface | Altera

Cable | <efummp-' Download
e Driver Cable
JIAG 2l :'""
=P JTAG On-Chip
UART Memory
<+ Debug Data [M] Avalon-MM master port

------- Character Stream ['S] Avalon-MM slave port

Hardware configuration (1)

* Read/Write FIFO settings:
— Buffer depth=2NB, N=3-15
— IRQ threshold

e |IRQ is asserted when the number of remaining bytes in the
Read FIFO, which can still be written (filled) by the JTAG
circuitry, equals the IRQ read threshold

* IRQ is asserted when the number of remaining bytes in the
Werite FIFO, which can still be read (emptied) by the JTAG
circuitry, equals the IRQ write thresold

— Construct using registers instead of memory blocks

e 1 B consumes roughly 11 logic elements (LEs)

Hardware configuration (2)

* Simulation settings:

— These settings control the generation of the JTAG
UART core simulation model

* Fixed input stream loaded in the Read FIFO at reset

* Macros for the ModelSim simulator to generate
Interactive Windows
— To display the content of the Write FIFO
— To also write the Read FIFO instead of the fixed input stream

— They do not affect the hardware generation

Register map (1)

* Data and Control registers

. Bit Description
Offset ";9'3“" RIW
ame 31| ... | 16 15 14|..|11|10]|9 |8 |7 |..!l2|1]0
0 data RW RAVAIL RVALID Reserved DATA
control RW WSPACE Reserved AC |WI |[RI Reserved WE | RE

* Data register

Bit(s) Name Access Description

The value to transfer to/from the JTAG core. When writing, the DATA field
[7:0] DATA R/W holds a character to be written to the write FIFO. When reading, the DATR field
holds a character read from the read FIFO.

Indicates whether the DaTa field is valid. If RvALID=1, the DATA field is valid,
otherwise DATA is undefined.

[37:16] RAVAIL R The number of characters remaining in the read FIFO (after the current read).
31

[15] RVALID R

Register map (2)

* Control register

Bit(s) Name Access Description
0 RE R/W Interrupt-enable bit for read interrupts.
1 WE R/W Interrupt-enable bit for write interrupts.
8 RI R Indicates that the read interrupt is pending.
9 WI R Indicates that the write interrupt is pending.
10 A R/C Indicates tha't there has been JTAG activity since the bit was cleared. Writing 1
to ac clears it to 0.
[32:16] WSPACE R The number of spaces available in the write FIFO.
31

— AC is set after an application on the host PC has polled the
JTAG UART core via the JTAG interface

— Once set, the AC bit remains set until it is explicitly cleared
via the Avalon interface. Writing 1 to AC clears it

— Embedded software can examine the AC bit to determine
if 2 connection exists to a host PC

Interrupt behaviour

JTAG can generate an interrupt when the Read
FIFO is almost full (read thresold) or the Write
FO is almost empty (write threshold)

— The write interrupt is cleared by writing characters to
fill the write FIFO beyond the write threshold

— The read interrupt is cleared by reading characters
from the read FIFO

— The read interrupt condition is also set if there is at
least one character in the read FIFO and no more
characters are expected

Software programming model

streams (using file pointer)

ANSI C
(Standard Library)

HAL HAL (using file descriptor)

(Unix-like functions)

altera_avalon_jtag_uart.c
Device - altera_avalon_jtag uart.h

Driver
- altera_avalon_jtag uart_regs.h

_________________________________ - system.h

JTAG UART DATA REGISTER
Core CONTROL REGISTER

File descriptor/pointer

~ile descriptors (integer) are used by low-level
/O functions: open, read, write, close,...

~ile pointers manage streams using high-level
functions (buffered operations):

— Unformatted 1/O: fgetc, fputc
— Formatted |/O: fprintf, fscanf,...

— Eg. stdin, stdout, stderr are specific streams which
do not require open and close operations and for

which printf, getchar, scanf,... functions are
defined

Blocking and Non blocking (1)

* A blocking read waits until the required bytes
are available

* To allow the read function to return
immediately if no data are available the file
descriptor must be opened with NONBLOCK
flag

— fd = open("/dev/<your device name>",
O_NONBLOCK | O_RDWR);

Blocking and Non blocking (2)

* When using a file pointer, we need to retrieve
the underlying file descriptor
int fd = fileno(fp);
int flags = fentl(fd, F_GETFL);
fentl(fd, F_SETFL, flags | O_NONBLOCK);
* These header file must be included:
#include <unistd.h>
#include <fcntl.h>

* When no data are available to read, EOF is
returned by the read function

Putting into practice (1)

* Write a program that shows on two 7-seg
displays the ASCII code of a character received
from the JTAG UART

— stdin, stdout, stderr streams must be disconnected
from JTAG UART device (BSP Editor)

— Use a file pointer (i.e., a generic stream) to access the
JTAG UART device

* You can use fgetc(), foutc(), fprintf(), fscanf()
— Use nios2-terminal to connect to the processor
* The Nios Il console on Eclipse must be turned off!

Putting into practice (2)

— See the effect of blocking read; for example
inserting some other operations in the main loop,
such as reading the DE2 slider switches and
updating the Red LEDs status accordingly

— Try to use the non-blocking flag

References

Altera “IEEE 1149.1 JTAG Boundary-Scan Testing,”
AN39 ver. 6.0, June 2005

Altera, “Nios Il Processor Reference Handbook,”
n2cpu_nii5vl.pdf
— Processor Architecture — JTAG Debug Module

Altera “Embedded Peripherals User Guide,”

ug_embedded ip.pdf

— 6. JTAG UART Core

Altera “Nios Il Software Developer’s Handbook,”

n2sw_nii5v2.pdf

— Chapter 6. Developing Programs Using the Hardware
Abstraction Layer

— Chapter 14. HAL API Reference

