
SISTEMI	EMBEDDED

Nios II	Characteristics
and	(Instruction	Set)	Architecture

Federico	Baronti Last	version:	20170328



Example	of	a	Nios II	System	(Computer)

FPGA



Nios II	Main	Characteristics

• RISC-style	architecture	(all	instructions	are	32-bit	long)
• 32-bit	data	word
• Byte-addressable	memory	space:

– with	little-endian	addressing	scheme	(lower	byte	addresses	
used	for	less	significant	bytes)

– The	LOAD	and	STORE	instructions	can	transfer	data	in	word,	
half-word,	and	byte

• Data	are	handled	in	word,	half-word,	and	byte
• 32	general-purpose	registers,	32-bit	long
• Several	additional	control	registers



Nios II	Other	Characteristics	(1)	

• Optional	shadow	register	sets	
• 32	interrupt	sources	(Internal	interrupt	
controller)

• External	interrupt	controller	interface	for	
more	interrupt	sources	

• Single-instruction	32	× 32	multiply	and	divide	
producing	a	32-bit	result	

• Dedicated	instructions	for	computing	64-bit	
and	128-bit	products	of	multiplication



Nios II	Other	Characteristics	(2)	

• Floating-point	instructions	for	single-precision	
floating-point	operations	

• Single-instruction	barrel	shifter	
• Hardware-assisted	debug	module	enabling	
processor	start,	stop,	step,	and	trace	under	
control	of	the	Nios II	software	development	
tools	

• Optional	memory	management	unit	(MMU)	to	
support	operating	systems	that	require	MMUs	



Nios II	Characteristics	(3)	
• Optional	memory	protection	unit	(MPU)	
• Software	development	environment	based	on	the	
GNU	C/C++	tool	chain	and	the	Nios II	Software	
Build	Tools	(SBT)	for	Eclipse

• Integration	with	Altera's	SignalTap®	II	Embedded	
Logic	Analyzer,	enabling	real-time	analysis	of	
instructions	and	data	along	with	other	signals	in	
the	FPGA	design	

• Instruction	set	architecture	(ISA)	compatible	
across	all	Nios II	processor	versions
– Performance	up	to	250	DMIPS	



Nios II	Implementation	Versions	(1)

Nios II Processor Reference Handbook
May 2011

NII51015-11.0.0

Subscribe

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off. 
and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at 
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but 
reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any 
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device 
specifications before relying on any published information and before placing orders for products or services.

5. Nios II Core Implementation Details

This document describes all of the Nios® II processor core implementations available 
at the time of publishing. This document describes only implementation-specific 
features of each processor core. All cores support the Nios II instruction set 
architecture.

f For more information regarding the Nios II instruction set architecture, refer to the 
Instruction Set Reference chapter of the Nios II Processor Reference Handbook.

For common core information and details on a specific core, refer to the appropriate 
section:

■ “Device Family Support” on page 5–3

■ “Nios II/f Core” on page 5–4

■ “Nios II/s Core” on page 5–14

■ “Nios II/e Core” on page 5–19

Table 5–1 compares the objectives and features of each Nios II processor core. The 
table is designed to help system designers choose the core that best suits their target 
application.

Table 5–1. Nios II Processor Cores (Part 1 of 3)

Feature
Core

Nios II/e Nios II/s Nios II/f

Objective Minimal core size Small core size Fast execution speed

Performance

DMIPS/MHz (1) 0.15 0.74 1.16 

Max. DMIPS (2) 31 127 218

Max. fMAX (2) 200 MHz 165 MHz 185 MHz

Area 
< 700 LEs;

< 350 ALMs

< 1400 LEs;

< 700 ALMs

 Without MMU or MPU:

< 1800 LEs;

< 900 ALMs

With MMU:

< 3000 LEs;

< 1500 ALMs

With MPU:

< 2400 LEs;

< 1200 ALMs

Pipeline 1 stage 5 stages 6 stages

External Address Space 2 GB 2 GB
2 GB without MMU

4 GB with MMU

May 2011
NII51015-11.0.0

standardeconomy fast



Nios II	Implementation	Versions	(2)
5–2 Chapter 5: Nios II Core Implementation Details

Nios II Processor Reference Handbook May 2011 Altera Corporation

Instruction 
Bus

Cache – 512 bytes to 64 KB 512 bytes to 64 KB

Pipelined Memory Access – Yes Yes

Branch Prediction – Static Dynamic

Tightly-Coupled Memory – Optional Optional

Data Bus

Cache – – 512 bytes to 64 KB

Pipelined Memory Access – – –

Cache Bypass Methods – –

■ I/O instructions

■ Bit-31 cache bypass

■ Optional MMU

Tightly-Coupled Memory – – Optional

Arithmetic 
Logic Unit

Hardware Multiply – 3-cycle (3) 1-cycle (3)

Hardware Divide – Optional Optional 

Shifter 1 cycle-per-bit 3-cycle shift (3)
1-cycle barrel 

shifter (3)

JTAG Debug 
Module

JTAG interface, run control, 
software breakpoints Optional Optional Optional

Hardware Breakpoints – Optional Optional

Off-Chip Trace Buffer – Optional Optional

Memory Management Unit – – Optional

Memory Protection Unit – – Optional

Exception 
Handling

Exception Types

Software trap, 
unimplemented 
instruction, illegal 
instruction, hardware 
interrupt

Software trap, 
unimplemented 
instruction, illegal 
instruction, hardware 
interrupt

Software trap, 
unimplemented 
instruction, illegal 
instruction, 
supervisor-only 
instruction, 
supervisor-only instruction 
address, supervisor-only 
data address, misaligned 
destination address, 
misaligned data address, 
division error, fast TLB 
miss, double TLB miss, 
TLB permission violation, 
MPU region violation, 
internal hardware interrupt, 
external hardware 
interrupt, nonmaskable 
interrupt

Integrated Interrupt 
Controller Yes Yes Yes

External Interrupt Controller 
Interface No No Optional

Table 5–1. Nios II Processor Cores (Part 2 of 3)

Feature
Core

Nios II/e Nios II/s Nios II/f



Dhrystone	Benchmark	(1)
• Problem:	compare	processors	with	(very)	different	
architectures	in	a	way	representative	of	real-world	
applications
– MIPS	are	unsuitable	to	compare	RISC	with	CISC	processors,	
which	have	very	different	instruction	sets

• Dhrystone	benchmark	was	first	published	in	Ada	back	
to	1984

• Now	the	C	version	of	Dhrystone	is	largely	used	in	
industry



Dhrystone	Benchmark	(2)
• Dhrystone	code	dominated	by	simple	integer	
arithmetic	operations,	string	operations,	logic	
decisions,	and	memory	accesses

• Dhrystone	result	is	determined	by	measuring	the	
average	time	a	processor	takes	to	perform	many	
iterations	of	a	single	loop	containing	a	fixed	
sequence	of	instructions	that	make	up	the	
benchmark

• Dhrystone	compares	the	performance	of	the	
processor	under	benchmark	to	that	of	a	
reference	machine



Dhrystone	MIPS	(1)
• The	industry	has	adopted	the	VAX	11/780	as	the	
reference,	namely	1	MIP	machine.	The	VAX	
11/780	achieves	1757	Dhrystones	per	second

• DMIPS	figure	of	a	computer	is	calculated	by	
measuring	the	number	of	Dhrystones	per	second	
performed	by	the	computer,	and	dividing	it	by	
1757
– So	"80	DMIPS”	means	"80	Dhrystone	VAX	MIPS”,	
which	implies	80	times	faster	than	a	VAX	11/780

• A	DMIPS/MHz	rating	takes	this	normalization	
process	one	step	further,	enabling	comparison	of	
processor	performance	at	different	clock	rates



Dhrystone	MIPS	(2)

• Dhrystone	numbers	actually	reflect	the	
performance	of	the	C	compiler	and	libraries,	
probably	more	than	the	performance	of	the	
processor	itself.	Also,	lack	of	independent	
certification	means	that	customers	are	
dependent	on	processor	vendors	to	quote	
accurate	and	meaningful	Dhrystone	data.	



“And	of	course,	the	very	success	of	a	benchmark	
program	is	a	danger	in	that	people	may	tune	
their	compilers	and/or	hardware	to	it,	and	with	
this	action	make	it	less	useful.”
Reinhold	P.	Weicker,	Siemens	AG,	April	1989
Author	of	the	Dhrystone	Benchmark	



Nios II	registers	(1)
• General-purpose	registers	(r0-r31)

3–10 Chapter 3: Programming Model
Registers

Nios II Processor Reference Handbook May 2011 Altera Corporation

Default Cacheability
The default cacheability specifies whether normal load and store instructions access 
the data cache or bypass the data cache. The default cacheability is only present for 
data regions. You can override the default cacheability by using the ldio or stio 
instructions. The bit 31 cache bypass feature is available when the MPU is present. 
Refer to “Cache Memory” on page 3–53 for more information on cache bypass.

Overlapping Regions
The memory addresses of regions can overlap. Overlapping regions have several uses 
including placing markers or small holes inside of a larger region. For example, the 
stack and heap may be located in the same region, growing from opposite ends of the 
address range. To detect stack/heap overflows, you can define a small region between 
the stack and heap with no access permissions and assign it a higher priority than the 
larger region. Any access attempts to the hole region trigger an exception informing 
system software about the stack/heap overflow.

If regions overlap so that a particular access matches more than one region, the region 
with the highest priority (lowest index) determines the access permissions and default 
cacheability.

Enabling the MPU
The MPU is disabled on system reset. System software enables and disables the MPU 
by writing to a control register. Before enabling the MPU, you must create at least one 
instruction and one data region, otherwise unexpected results can occur. Refer to 
“Working with the MPU” on page 3–29 for more information.

Registers
The Nios II register set includes general-purpose registers and control registers. In 
addition, the Nios II/f core can optionally have shadow register sets. This section 
discusses each register type.

General-purpose Registers
The Nios II architecture provides thirty-two 32-bit general-purpose registers, r0 
through r31, as described in Table 3–5. Some registers have names recognized by the 
assembler. For example, the zero register (r0) always returns the value zero, and 
writing to zero has no effect. The ra register (r31) holds the return address used by 
procedure calls and is implicitly accessed by the call, callr and ret instructions. C 
and C++ compilers use a common procedure-call convention, assigning specific 
meaning to registers r1 through r23 and r26 through r28.

Table 3–5. The Nios II General-Purpose Registers (Part 1 of 2)

Register Name Function Register Name Function

r0 zero 0x00000000 r16 Callee-saved register

r1 at Assembler temporary r17 Callee-saved register

r2 Return value r18 Callee-saved register

r3 Return value r19 Callee-saved register

Chapter 3: Programming Model 3–11
Registers

May 2011 Altera Corporation Nios II Processor Reference Handbook

f For more information, refer to the Application Binary Interface chapter of the Nios II 
Processor Reference Handbook.

Control Registers
Control registers report the status and change the behavior of the processor. Control 
registers are accessed differently than the general-purpose registers. The special 
instructions rdctl and wrctl provide the only means to read and write to the control 
registers and are only available in supervisor mode.

1 When writing to control registers, all undefined bits must be written as zero.

The Nios II architecture supports up to 32 control registers. Table 3–6 lists details of 
the defined control registers. All nonreserved control registers have names recognized 
by the assembler. 
 

r4 Register arguments r20 Callee-saved register

r5 Register arguments r21 Callee-saved register

r6 Register arguments r22 Callee-saved register

r7 Register arguments r23 Callee-saved register

r8 Caller-saved register r24 et Exception temporary 

r9 Caller-saved register r25 bt Breakpoint temporary (1)

r10 Caller-saved register r26 gp Global pointer

r11 Caller-saved register r27 sp Stack pointer

r12 Caller-saved register r28 fp Frame pointer

r13 Caller-saved register r29 ea Exception return address 

r14 Caller-saved register r30 ba Breakpoint return address (2)

r15 Caller-saved register r31 ra Return address

Notes to Table 3–5:
(1) r25 is used exclusively by the JTAG debug module. It is used as the breakpoint temporary (bt) register in the normal register set. In shadow 

register sets, r25 is reserved.
(2) r30 is used as the breakpoint return address (ba) in the normal register set, and as the shadow register set status (sstatus) in each shadow 

register set. For details about sstatus, refer to “The sstatus Register” on page 3–27.

Table 3–5. The Nios II General-Purpose Registers (Part 2 of 2)

Register Name Function Register Name Function

Table 3–6. Control Register Names and Bits (Part 1 of 2)

Register Name Register Contents

0 status Refer to Table 3–7 on page 3–12

1 estatus Refer to Table 3–9 on page 3–14

2 bstatus Refer to Table 3–10 on page 3–15

3 ienable Internal interrupt-enable bits (3)

4 ipending Pending internal interrupt bits (3)

5 cpuid Unique processor identifier

6 Reserved Reserved

7 exception Refer to Table 3–12 on page 3–16



Nios II	registers	(2)
• Control	registers accessible	only	by	the	special	instructions	rdctl and	

wrctl that	are	only	available	in	supervisor	mode



Status	register	(1)



Status	register	(2)



Other	control	registers	(1)

• The	estatus register holds	a	saved	copy	of	the	
status	register	during	nonbreak exception	
processing

• The	bstatus register	holds	a	saved	copy	of	the	
status	register	during	break	exception	processing

• The	ienable register controls	the	handling	of	
internal	hardware	interrupts

• The	ipending register indicates	the	value	of	the	
interrupt	signals	driven	into	the	processor



Other	control	registers	(2)

• The	cpuid register	holds	a	constant	value	that	
is	defined	in	the	Nios II	Processor	parameter	
editor	to	uniquely	identify	each	processor	in	a	
multiprocessor	system

• When	the	extra	exception	information	option	
is	enabled,	the	Nios II	processor	provides	
information	useful	to	system	software	for	
exception	processing	in	the	exception	and	
badaddr registers	when	an	exception	occurs

• …



Addressing	Modes	(1)
• How	operands	are	specified	in	an	instruction
• Nios 2	proc.	supports	5	addressing	modes:
– Immediate	mode:	a	16-bit	operand	is	contained	in	
the	instruction	itself.	This	value	is	(sign-)extended	
to	produce	a	32-bit	operand	for	(arithmetic)	
instructions

– Register	mode:	the	operand	is	the	content	of	a	
register

– Register	indirect	mode:	the	effective	address	of	
the	operand	is	the	content	of	a	register



Addressing	Modes	(2)
• Nios 2	proc.	supports	5	addressing	modes:
– Displacement	mode:	the	effective	address	of	the	
operand	is	obtained	by	adding	the	content	of	a	
register	and	a	16-bit	value	contained	in	the	
instruction	itself.

– Absolute	mode:	is	a	particular	case	of	the	
Displacement	mode when	the	register	is	r0

• E.g.	addi r3, r2, 100
the	content	of	r2	is	added	to	100	and	the	
result	placed	in	r3



Addressing	Modes	(3)

[ri]	indicates	the	content	of	the	register	ri



Instruction	formats	(1)
• RISC-style	instructions	(all	32-bit	long)
– Load/store	architecture	for	data	transfers
– Arithmetic/logic	instructions	use	registers

• Three	instruction	types:
I-type OP dst_reg, src_reg, immediate
R-type OP dst_reg, src_reg1, src_reg1
J-type call label_or_address

• label_or_address is	a	26-bit	unsigned	immediate	
value



Instruction	formats	(2)
• I-type	instructions	include	arithmetic	and	logical	operations	

such	as	addi and	andi;	branch operations;	load and	store
operations;	and	cache	management	operations.	

• R-type	instructions	include	arithmetic	and	logical	operations	
such	as	add, and,	nor;	comparison	operations	such	as	cmpeq
and	cmplt

• J-type	instructions	such	as	call and	jmpi,	transfer	execution	
anywhere	within	a	256-MB	range	

Nios II Processor Reference Handbook
May 2011

NII51017-11.0.0

Subscribe

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off. 
and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at 
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but 
reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any 
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device 
specifications before relying on any published information and before placing orders for products or services.

8. Instruction Set Reference

This section introduces the Nios® II instruction word format and provides a detailed 
reference of the Nios II instruction set. This chapter contains the following sections:

■ “Word Formats” on page 8–1

■ “Instruction Opcodes” on page 8–3

■ “Assembler Pseudo-Instructions” on page 8–4

■ “Assembler Macros” on page 8–5

■ “Instruction Set Reference” on page 8–5

Word Formats
There are three types of Nios II instruction word format: I-type, R-type, and J-type.

I-Type
The defining characteristic of the I-type instruction word format is that it contains an 
immediate value embedded within the instruction word. I-type instructions words 
contain:

■ A 6-bit opcode field OP

■ Two 5-bit register fields A and B

■ A 16-bit immediate data field IMM16

In most cases, fields A and IMM16 specify the source operands, and field B specifies 
the destination register. IMM16 is considered signed except for logical operations and 
unsigned comparisons.

I-type instructions include arithmetic and logical operations such as addi and andi; 
branch operations; load and store operations; and cache management operations. 

Table 8–1 shows the I-type instruction format.

R-Type
The defining characteristic of the R-type instruction word format is that all arguments 
and results are specified as registers. R-type instructions contain:

■ A 6-bit opcode field OP

■ Three 5-bit register fields A, B, and C

Table 8–1. I-Type Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 OP

May 2011
NII51017-11.0.0

8–2 Chapter 8: Instruction Set Reference
Word Formats

Nios II Processor Reference Handbook May 2011 Altera Corporation

■ An 11-bit opcode-extension field OPX

In most cases, fields A and B specify the source operands, and field C specifies the 
destination register. 

Some R-Type instructions embed a small immediate value in the five low-order bits of 
OPX. Unused bits in OPX are always 0.

R-type instructions include arithmetic and logical operations such as add and nor; 
comparison operations such as cmpeq and cmplt; the custom instruction; and other 
operations that need only register operands.

Table 8–2 shows the R-type instruction format.

J-Type
J-type instructions contain:

■ A 6-bit opcode field 

■ A 26-bit immediate data field

J-type instructions, such as call and jmpi, transfer execution anywhere within a 
256-MB range.

Table 8–3 shows the J-type instruction format.

Table 8–2. R-Type Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C OPX OP

Table 8–3. J-Type Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM26 OP

8–2 Chapter 8: Instruction Set Reference
Word Formats

Nios II Processor Reference Handbook May 2011 Altera Corporation

■ An 11-bit opcode-extension field OPX

In most cases, fields A and B specify the source operands, and field C specifies the 
destination register. 

Some R-Type instructions embed a small immediate value in the five low-order bits of 
OPX. Unused bits in OPX are always 0.

R-type instructions include arithmetic and logical operations such as add and nor; 
comparison operations such as cmpeq and cmplt; the custom instruction; and other 
operations that need only register operands.

Table 8–2 shows the R-type instruction format.

J-Type
J-type instructions contain:

■ A 6-bit opcode field 

■ A 26-bit immediate data field

J-type instructions, such as call and jmpi, transfer execution anywhere within a 
256-MB range.

Table 8–3 shows the J-type instruction format.

Table 8–2. R-Type Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C OPX OP

Table 8–3. J-Type Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM26 OP



Load	and	Store	Instructions
• For	moving	data	between	memory	(or	I/O)
and	general-purpose	registers

• Words,	half-words,	bytes;	alignment	required
• Variants	available	for	I/O	(uncached)	access
• Examples:

ldw r2, 40(r3) // load word
stb r6, 4(r12) // store byte
ldhio r9, (r20)     // load I/O halfword

// signed extended
ldbu r2, -100(r3)   // load byte zero

// extended
stw r7, 100(r0)    // store word



Arithmetic	Instructions

• add,	addi (16-bit	immediate	is	sign-extended)
• sub,	subi,	mul,	and	muli are	similar
• Mult.	is	unsigned,	result	is	truncated	to	32	bits
• div (signed	values),	divu (unsigned	values)
• Examples:

add r2, r3, r4 //(r2 ← [r3] + [r4])
muli r6, r7, 4096 //(r6 ← [r7] × 4096)
divu r8, r9, r10 //(r8 ← [r9] / [r10])



Logic	Instructions

• and,	or,	xor,	nor have	2	register	operands
• andi,	ori,	xori,	nori have	a	register	operand	
and	an	immediate	operand	that	is
zero-extended from	16	bits	to	32	bits

• Examples:
or r7, r8, r9 //(r7 ← [r8] OR [r9])
andi r4, r5, 0xFF //(r4 ← [r5] AND 255)

• andhi,	orhi,	xorhi shift	16-bit	immediate	left	
and	clear	lower	16	bits	to	zero



Move	Instructions
• Pseudoinstructions provided	for	convenience:
mov ri, rj => add ri, r0, rj
movi ri, Val16 => addi ri, r0, Val16
moviu ri, Val16 => ori ri, r0, Val16

• Move	Immediate	Address	for	32-bit	value:
movia ri, LABEL => orhi ri, r0, LABEL_HI

ori ri, ri, LABEL_LO

• LABEL_HI			is	upper	16	bits	of	LABEL,	and
LABEL_LO	 is	lower	16	bits	of	LABEL



Branch	and	Jump	Instructions

• Unconditional	branch: br LABEL
• Instruction	encoding	uses	signed	16-bit	byte	
offset

• Signed/unsigned	comparison	and	branch:
blt ri, rj, LABEL // signed [ri]<[rj]
bltu ri, rj, LABEL // unsigned [ri]<[rj]

• beq,	bne,	bge,	bgeu,	bgt,	bgtu,	ble,	and	bleu
• Unconditional	branch	beyond	16-bit	offset:

jmp ri // jump to address in ri



Subroutine	Linkage	Instructions

• Subroutine	call	instruction: call LABEL
• Saves	return	address	(from	PC)	in	r31 (ra)
• Target	encoded	as	26-bit	immediate,	Value26
• At	execution	time,	32-bit	address	derived	as:

Jump	address:	PC31-28 :	Value26	:	00
• Call	with	target	in	register: callr ri
• Return	instruction: ret
– Branches	to	address	saved	in	r31 (ra)



Parameter	Passing	&	Stack	Frames

• Pass	parameters	in	register	or	using	stack
• Build	stack	frames	for	private	work	space	and
saving	registers	when	nesting	subroutine	calls

• Called	routine	always	saves	frame	ptr r28 (fp)	
before	creating	its	own	private	work	space

• Return	addr r31 (ra)	saved	to	enable	nesting
• Use	fp with	displacement	to	access	stack	data:

ldw r4, 8(fp)



Comparison	Instructions

• Result	of	comparing	two	operands	is	placed	in	
destination	register:	1	(if	true)	or	0	(if	false)

• Less-than	comparisons	that	set	ri to	0	or	1:
cmplt ri, rj, rk // signed [rj] < [rk] 
cmpltu ri, rj, rk // unsigned [rj] < [rk] 
cmplti ri, rj, Val16 // signed [rj] < Val16
cmpltui ri, rj, Val16 //unsigned [rj]<Val16

• Val16	is	sign- or	zero-extended	based	on	type
• Similarly	for:	...eq..,	...ne..,	…le..,	…ge..,	...gt..



Shift	and	Rotate	Instructions

• Shift	right	logical	rj,	destination	register	is	ri:
srl ri, rj, rk //shift by amount in rk
srli ri, rj, Val5 //shift by immediate value

• Shift	right	arithmetic	sra,	srai:	same	as	above
except	that	sign	in	bit	rj31 is	preserved

• Shift	left	logical	sll,	slli
• Rotate	left	rol,	roli
• Rotate	right	ror (no	immediate	version)



Control	Instructions

• Special	instructions	to	access	control	registers
• Read	Control	Register	instruction:

rdctl ri, ctlj // ri ← [ctlj]

• Write	Control	Register	instruction:
wrctl ctlj, ri // ctlj ← [ri]

• Instructions	trap,	eret deal	with	exceptions
(similar	to	call,	ret but	for	different	purpose)	

• Additional	instructions	for	cache	management



Pseudoinstructions

• mov,	movi,	and	movia already	discussed;
translated	to	other	instructions	by	assembler

• Subtract	immediate	is	actually	add	immediate	with	
negation	of	constant:
subi ri, rj, Value16 => addi ri, rj, -Value16

• Also	can	swap	operands	for	comparisons:
bgt ri, rj, LABEL => blt rj, ri, LABEL

• Awareness	of	pseudoinstructions is	not	critical,
except	when	examining	assembled	code



Assembler	Directives

• Nios II	assembler	directives	conform	to
those	defined	by	widely	used	GNU	assembler:
.org Value (code/data	origin)
.equ LABEL,	Value (equate	to	label)
.byte expressions (define	byte	data)
.hword expressions (define	halfwords)
.word expressions (define	word	data)
.skip Size (reserve	bytes)
.end (end	of	source	code)



Carry/Overflow	Detection	for	Add

• Nios II	does	not	have	condition	codes	(flags)
• Arithmetic	performed	in	same	manner
for	signed	and	unsigned	operands

• Detect	carry/overflow	needs	more	instructions
• Carry:	test	if	unsigned	result	is	less	than	either	
one	of	the	operands:

add r4, r2, r3
cmpltu r5, r4, r2

• Carry	bit	is	in	r5



Carry/Overflow	Detection	for	Add

• Overflow:	compare	signs	of	operands	&	result
• Use	xor,	and	to	check	for	same	operand	signs	
and	different	sign	for	result:

add r4, r2, r3
xor r5, r4, r2
xor r6, r4, r3
and r5, r5, r6
blt r5, r0, OVERFLOW

• Similar	checks	for	subtract	carry/overflow



Input/Output

• Use	I/O	versions	of	Load/Store	instructions
• Polling	for	program-controlled	output:

movia r6, DATA_REG_ADDR
mov r7, DATA_TO_SEND
movia r4, STATUS_REG_ADDR

L1:
ldbio r5, (r4)
andi r5, r5, STATUS_FLAG_BIT
beq r5, r0, L1
stbio r7, (r6)



Example	Program

• Vector	dot	product	performs	multiplication	
and	addition	operations	for	array	elements
– Vectors	A	and	B	stored	starting	from	address	AVEC	
and	BVEC,	respectively

– Vector	size	stored	at	address	N
– Result	must	be	stored	at	address	DOTPROD
– Vector	element,	vector	size	and	result	are	32-bit	
wide





References

• Altera,	“Nios II	Processor	Reference	
Handbook,”	n2cpu_nii5v1.pdf
– 2.	Processor	Architecture
– 3.	Programming	Model/Exception	Processing
– 8.	Instruction	Set	Reference

• C.	Hamacher,	Z.	Vranesic,	S.	Zaky,	N.	Manjikian
"Computer	Organization	and	Embedded	Systems,”	
McGraw-Hill	International	Edition
– Appendix	B:	from	B.1	to	B.10


