Android

L _ Programming
PN 2= - R and Security

Dependable and Secure
System

g
T:o Neltelellale

N

—

~—

/’7""\"\""‘

SEpCyECGict g |

P

Part |l

o Android System and Application

Security.

Smartphone Security Issues

o Due to their large number of
functionalities and connectivity interfaces,

smartphones are liable to several security
attacks.

o Possible attack vectors:
o Bluetooth
o Wi-Fi
o Telephony (3G, SMS, phone calls...)

Smartphone Security Issues (2)

o Targets of the attack:
o Private data
o SMS messages

o Contacts
o IMElI code

o Username and Passwords (social network,
home banking).

o User Money
o Leaking credit from SIM card.
o Hidden subscription to premius services.

Attack Methods

o Privilege Escalation: an application
communicate with another one with
higher privileges, to perform a malicious
unauthorized operation.

o Trojan: hidden malicious code that
sneakily performs malicious operations.

o Social Engineering: attempts to force the
user to unveill private data.

o Eavesdropping.

Standard Security Mechanism

o Every mobile phone (non only smartphone)
send and receive encripted fraffic.

o The keys to encrypt/decript data are stored in
the SIM card.

o Intfernet connection may use https and
certificates.

o Basic integrity checks of the OS and
application signature verification are
provided by almost all mobile OSs.

Standard security mechanisms

o Generally they only manage to limit
eavesdropping.

o Ineffective against the other attacks...
o Need of specific solutions!

Native Android Security
Mechanisms

o Sandboxing (Isolation)
o Dalvik Virtual Machine
o Linux Kernel

o Access Control
o Permission System

Sandboxing

o Dalvik Virtual Machine act as a sandbox
for Android applications.

o Each application can perform all of its
operations inside the virtual machine.

o Each application operates like it there are
no other applications running on the
device.

o Application cannot communicate
directly.

Isolation

o Every Android application has a different
Linux User ID.

o Different storage space: an application
cannot modify files of other applications.

o Application execution is interference-free.

o This should avoid the privilege escalation
attacks.

o Android applications are normal Linux user
without root privilege: an application cannot
modify system files.

Access Control

o Critical resources and access to dangerous
operations, in Android smartphones are
protected by access control mechanisms.

o Examples of Critical Resources:

o Contact Lists, SD Card, Smartphone Data,
Accounts, SMS inbox/outbox...

o Examples of Critical Actions:

o Send SMS messages, start phone call, access
the internet, turn on/switch off connectivity
interfaces...

Permission System

o An Android application that will access a
critical resource, or will perform a
protected operation, have to ask the
permission to do so.

o Permissions can be seen like a declaration
of intent. The application developer
declares that the application want to
perform a critical operation.

Permissions in Manifest

o Permissions are declared by developer in
the manifest file, using a specific XML tag:

<uses-permission android:name="string" />

o Android defines 120 permissions, identified
by the name:
android.permission.Permission

Permission Levels

o There are four levels of permissions:

o Normal: Related to non-dangerous resources.
Example: VIBRATION.

o Dangerous: Related to critical resources and
costly services. Example: SEND_SMS.

o Signature: Permissions that can be required only
by applications developed by the same
developers.

o Signature or System: Like signature, but can be
required also by Android native applications.

Permission Checker

o The permission checker is the component
that verifies af runtime, if an application
that is going to perform a crifical
operation, has declared the related
permissions.

o If the permission has been declared the
operation is allowed, otherwise the
operation is denied.

Permission Verification)

Call to critical
API| Function

Permission
Checker Invoked

Permission
Deny

Operation

in
Manifest

Allow
Operation

Permission Verification (2)

o The API functions that perform critical operations I

call the permission checker before doing any
operation.

o The permission checker verifies that the
application has the permission related to critical
operation that the function will perform.

o If the permission has not been declared the
operafion is denied. The funcfion throws a security
exception for missing permission and no refurnis
given from the function.

o Generally the exception is not caught by the
developer or the missing return is not handled,
causing the application to crash.

Static Permission VS Dynamic
Verification

o Permissions are declared statically in manifest
files. Verification is performed dynamically.

o It is possible that a developer call in the Java
code a crifical function without asking for the
permission in the manifest file.

o Programming error. No warning are raised!
When including a potentially critical function
control the APl documentation to see the
required permissions.

Creating Permissions

o A developer can define permissions to protect an
application or components of an application.

o If some operations performed by an application
are critical on the side of security they should be
protected.

o <permission android:description="string resource"
android:icon="drawable resource"
android:label="string resource"
android:name="string"
android:permissionGroup="string"
android:protectionLevel=["normal” | "dangerous”

| "signature" | "signatureOrSystem'] />

Creating Permissions (2)

o With a permission is possible to protect:
o An activity
o A service
o An intent filter

o The whole application.

o The protected resource has 1o be
specified in the android:name field of the
permission.

Malware

o Starting from 2009 mobile platforms,
especially Android, have become target
of specific attacks.

o The largest increase in malware number
targeting Android devices has been
observed in 2011.

o Two main types: Trojans and Rooftkits.

Trojans

o Hidden malicious code in good looking
applications. These malware comes as normal
applications that works fine (videogames,
contact magers...). However in background

these Gppllca’rlons stealthy perform malicious
behaviors.

o Example of malicious behaviors:
o Stealthy sent SMS messages.
o Recording phone calls.
o Send private data to external servers.
o Subscription to premium services.

Simple but Effective

o These malware are hardly identified, they
perform normal actions in a malicious
way.

o Example: Sending an SMS message is not
a malicious action by itself. It becomes
malicious if it is done stealthily, with
undesired costs, or if the messages are
sent to premium rate numbers.

Rooftkits

o Malicious applications that take control of
the device, generally exploiting some
system weaknesses.

o The application take rooft privileges and
then perform strong attacks like:

o Downloads and installs other malicious
applications.

o Delete user files.

o Steal private data.

Root Access

o Shell and other applications are users without root
privileges.

o The command SU (switch user) has been disabled
in the modified kernel version used by Android.

o Rooting an Android device simply means to
enable again the SU command.

o The rooting method is different for each device.
Generally is performed through a buffer overflow,
where the instructions to install the SU command
are pushed in the execution stack, exploiting
system (hardware or software) vulnerabilities.

Detect Malware With
Permissions

o Trojans can be recognized, sometimes,
because they ask for non-justified
permissions:

o Why a videogame should ask to send SMS
messages or perform phone callse

o Once the permission has been granted, the
malware will legally perform the malicious
behavior of sending messages.

Weaknesses

o Too coarse grained. For example the
SEND_SMS permission does not give any
specification on the number of outgoing SMS
messages, neither the destination number is
specified.

o Accept all or deny. An application may ask
for several permissions. If a single permission is
not accepted, the application is not installed.

o Rooftkits are able to take control without
asking for permissions.

Weaknesses

o Who is really enforcing the security policy of
PEermissionse

o The user!!

o When user downloads an application and
wants to install it, a list of the required
permission is shown. Then the user chooses to
accept them all or stop the installation.

o According to some recent surveys more than
60% of the users do not even know what
permissions are.

Permission Overdeclaration

o The problem of permission overdeclaration is dual to
the error of forgetting to declare a needed
permission.

o A developer declare in the manifest more
permissions than those effectively required by the
application.

o This error is extremely common for at least two
reasons:
o Enthusiast developers with limited experience.
o Name and description of permissions confusing.
o The effect of permission overdeclaration is

decreasing the aftenfion that users put in reading
permissions.

Some Research Solutions

o Allow the user to choose a subset of
permissions for each application.

o Tracking outgoing information and
avoiding requests and fransmission of
private data.

o TISSA: modification of the permission
checker to avoid security exception and
providing empty or bogus results.

Some Research Solutions (2)

o Definition of policies to avoid dangerous
coupling of permissions.
o An application that can access user private

data, should not be allowed to connect to
the network.

o An application cannot send SMS when the
user is not active.

Some Research Solutions (3)

o Profiling device, user and application
behaviors.

o Use statistics (Chi-Squared), probability
(Markov Chain) or computational
intelligence (ANN, Classifiers) to detect
anomalies in the execution.

o Extremely effective in detecting rooftkits
and trojans.

Some Research Solutions (4)

o Static classification of Android application
analyzing declared permissions and other
metadata.

o Assigning a threat value to each
permission and thus to each application.

o Avoid permission overdeclaration,
rewarding application that declare as less
permissions as possible.

