
Android

Programming

and Security
Dependable and Secure

System

Andrea Saracino

andrea.saracino@iet.unipi.it

Part II

Android System and Application

Security.

Smartphone Security Issues

 Due to their large number of

functionalities and connectivity interfaces,

smartphones are liable to several security

attacks.

 Possible attack vectors:

 Bluetooth

 Wi-Fi

 Telephony (3G, SMS, phone calls…)

Smartphone Security Issues (2)

 Targets of the attack:

 Private data

 SMS messages

 Contacts

 IMEI code

 Username and Passwords (social network,
home banking).

 User Money

 Leaking credit from SIM card.

 Hidden subscription to premius services.

Attack Methods

 Privilege Escalation: an application
communicate with another one with
higher privileges, to perform a malicious
unauthorized operation.

 Trojan: hidden malicious code that
sneakily performs malicious operations.

 Social Engineering: attempts to force the
user to unveil private data.

 Eavesdropping.

Standard Security Mechanism

 Every mobile phone (non only smartphone)

send and receive encripted traffic.

 The keys to encrypt/decript data are stored in

the SIM card.

 Internet connection may use https and

certificates.

 Basic integrity checks of the OS and

application signature verification are

provided by almost all mobile OSs.

Standard security mechanisms

 Generally they only manage to limit

eavesdropping.

 Ineffective against the other attacks…

 Need of specific solutions!

Native Android Security

Mechanisms

 Sandboxing (Isolation)

 Dalvik Virtual Machine

 Linux Kernel

 Access Control

 Permission System

Sandboxing

 Dalvik Virtual Machine act as a sandbox
for Android applications.

 Each application can perform all of its
operations inside the virtual machine.

 Each application operates like it there are
no other applications running on the
device.

 Application cannot communicate
directly.

Isolation
 Every Android application has a different

Linux User ID.

 Different storage space: an application
cannot modify files of other applications.

 Application execution is interference-free.

 This should avoid the privilege escalation
attacks.

 Android applications are normal Linux user
without root privilege: an application cannot
modify system files.

Access Control
 Critical resources and access to dangerous

operations, in Android smartphones are
protected by access control mechanisms.

 Examples of Critical Resources:

 Contact Lists, SD Card, Smartphone Data,
Accounts, SMS inbox/outbox…

 Examples of Critical Actions:

 Send SMS messages, start phone call, access
the internet, turn on/switch off connectivity
interfaces…

Permission System

 An Android application that will access a

critical resource, or will perform a

protected operation, have to ask the

permission to do so.

 Permissions can be seen like a declaration

of intent. The application developer

declares that the application want to

perform a critical operation.

Permissions in Manifest

 Permissions are declared by developer in

the manifest file, using a specific XML tag:

<uses-permission android:name="string" />

 Android defines 120 permissions, identified

by the name:

android.permission.Permission

Permission Levels

 There are four levels of permissions:

 Normal: Related to non-dangerous resources.

Example: VIBRATION.

 Dangerous: Related to critical resources and

costly services. Example: SEND_SMS.

 Signature: Permissions that can be required only

by applications developed by the same

developers.

 Signature or System: Like signature, but can be

required also by Android native applications.

Permission Checker

 The permission checker is the component

that verifies at runtime, if an application

that is going to perform a critical

operation, has declared the related

permissions.

 If the permission has been declared the

operation is allowed, otherwise the

operation is denied.

Permission Verification
Call to critical

API Function

Permission

Checker Invoked

Permission

in

Manifest

Deny

Operation

Allow

Operation

Permission Verification (2)
 The API functions that perform critical operations

call the permission checker before doing any
operation.

 The permission checker verifies that the
application has the permission related to critical
operation that the function will perform.

 If the permission has not been declared the
operation is denied. The function throws a security
exception for missing permission and no return is
given from the function.

 Generally the exception is not caught by the
developer or the missing return is not handled,
causing the application to crash.

Static Permission VS Dynamic

Verification

 Permissions are declared statically in manifest

files. Verification is performed dynamically.

 It is possible that a developer call in the Java

code a critical function without asking for the

permission in the manifest file.

 Programming error. No warning are raised!

When including a potentially critical function

control the API documentation to see the
required permissions.

Creating Permissions
 A developer can define permissions to protect an

application or components of an application.

 If some operations performed by an application
are critical on the side of security they should be
protected.

 <permission android:description="string resource"
android:icon="drawable resource"
android:label="string resource"
android:name="string"
android:permissionGroup="string"
android:protectionLevel=["normal" | "dangerous"
|"signature" | "signatureOrSystem"] />

Creating Permissions (2)

 With a permission is possible to protect:

 An activity

 A service

 An intent filter

 The whole application.

 The protected resource has to be

specified in the android:name field of the

permission.

Malware

 Starting from 2009 mobile platforms,

especially Android, have become target

of specific attacks.

 The largest increase in malware number

targeting Android devices has been

observed in 2011.

 Two main types: Trojans and Rootkits.

Trojans
 Hidden malicious code in good looking

applications. These malware comes as normal
applications that works fine (videogames,
contact magers…). However in background
these applications stealthy perform malicious
behaviors.

 Example of malicious behaviors:
 Stealthy sent SMS messages.

 Recording phone calls.

 Send private data to external servers.
 Subscription to premium services.

Simple but Effective

 These malware are hardly identified, they

perform normal actions in a malicious

way.

 Example: Sending an SMS message is not

a malicious action by itself. It becomes

malicious if it is done stealthily, with

undesired costs, or if the messages are

sent to premium rate numbers.

Rootkits

 Malicious applications that take control of
the device, generally exploiting some
system weaknesses.

 The application take root privileges and
then perform strong attacks like:

 Downloads and installs other malicious
applications.

 Delete user files.

 Steal private data.

Root Access
 Shell and other applications are users without root

privileges.

 The command SU (switch user) has been disabled
in the modified kernel version used by Android.

 Rooting an Android device simply means to
enable again the SU command.

 The rooting method is different for each device.
Generally is performed through a buffer overflow,
where the instructions to install the SU command
are pushed in the execution stack, exploiting
system (hardware or software) vulnerabilities.

Detect Malware With

Permissions

 Trojans can be recognized, sometimes,

because they ask for non-justified

permissions:

 Why a videogame should ask to send SMS

messages or perform phone calls?

 Once the permission has been granted, the

malware will legally perform the malicious

behavior of sending messages.

Weaknesses
 Too coarse grained. For example the

SEND_SMS permission does not give any
specification on the number of outgoing SMS
messages, neither the destination number is
specified.

 Accept all or deny. An application may ask
for several permissions. If a single permission is
not accepted, the application is not installed.

 Rootkits are able to take control without
asking for permissions.

Weaknesses
 Who is really enforcing the security policy of

permissions?

 The user!!

 When user downloads an application and
wants to install it, a list of the required
permission is shown. Then the user chooses to
accept them all or stop the installation.

 According to some recent surveys more than
60% of the users do not even know what
permissions are.

Permission Overdeclaration
 The problem of permission overdeclaration is dual to

the error of forgetting to declare a needed
permission.

 A developer declare in the manifest more
permissions than those effectively required by the
application.

 This error is extremely common for at least two
reasons:
 Enthusiast developers with limited experience.
 Name and description of permissions confusing.

 The effect of permission overdeclaration is
decreasing the attention that users put in reading
permissions.

Some Research Solutions

 Allow the user to choose a subset of

permissions for each application.

 Tracking outgoing information and

avoiding requests and transmission of

private data.

 TISSA: modification of the permission

checker to avoid security exception and

providing empty or bogus results.

Some Research Solutions (2)

 Definition of policies to avoid dangerous

coupling of permissions.

 An application that can access user private

data, should not be allowed to connect to

the network.

 An application cannot send SMS when the

user is not active.

Some Research Solutions (3)

 Profiling device, user and application

behaviors.

 Use statistics (Chi-Squared), probability

(Markov Chain) or computational

intelligence (ANN, Classifiers) to detect

anomalies in the execution.

 Extremely effective in detecting rootkits

and trojans.

Some Research Solutions (4)

 Static classification of Android application

analyzing declared permissions and other

metadata.

 Assigning a threat value to each

permission and thus to each application.

 Avoid permission overdeclaration,

rewarding application that declare as less

permissions as possible.

