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Part II 

Android System and Application 

Security. 



Smartphone Security Issues 

 Due to their large number of 

functionalities and connectivity interfaces, 

smartphones are liable to several security 

attacks. 

 Possible attack vectors: 

 Bluetooth 

 Wi-Fi 

 Telephony (3G, SMS, phone calls…) 



Smartphone Security Issues (2) 

 Targets of the attack: 

 Private data 

 SMS messages 

 Contacts 

 IMEI code 

 Username and Passwords (social network, 
home banking). 

 User Money 

 Leaking credit from SIM card. 

 Hidden subscription to premius services. 



Attack Methods 

 Privilege Escalation: an application 
communicate with another one with 
higher privileges, to perform a malicious 
unauthorized operation. 

 Trojan: hidden malicious code that 
sneakily performs malicious operations. 

 Social Engineering: attempts to force the 
user to unveil private data. 

 Eavesdropping. 



Standard Security Mechanism 

 Every mobile phone (non only smartphone) 

send and receive encripted traffic.  

 The keys to encrypt/decript data are stored in 

the SIM card. 

 Internet connection may use https and 

certificates. 

 Basic integrity checks of the OS and 

application signature verification are 

provided by almost all mobile OSs. 



Standard security mechanisms 

 Generally they only manage to limit 

eavesdropping. 

 Ineffective against the other attacks… 

 Need of specific solutions! 



Native Android Security 

Mechanisms 

 Sandboxing (Isolation) 

 Dalvik Virtual Machine 

 Linux Kernel 

 Access Control 

 Permission System 



Sandboxing 

 Dalvik Virtual Machine act as a sandbox 
for Android applications. 

 Each application can perform all of its 
operations inside the virtual machine. 

 Each application operates like it there are 
no other applications running on the 
device. 

 Application cannot communicate 
directly. 



Isolation 
 Every Android application has a different 

Linux User ID.  

 Different storage space: an application 
cannot modify files of other applications. 

 Application execution is interference-free. 

 This should avoid the privilege escalation 
attacks. 

 Android applications are normal Linux user 
without root privilege: an application cannot 
modify system files. 



Access Control 
 Critical resources and access to dangerous 

operations, in Android smartphones are 
protected by access control mechanisms. 

 Examples of Critical Resources: 

 Contact Lists, SD Card, Smartphone Data,  
Accounts, SMS inbox/outbox… 

 Examples of Critical Actions: 

 Send SMS messages, start phone call, access 
the internet, turn on/switch off connectivity 
interfaces… 

 



Permission System 

 An Android application that will access a 

critical resource, or will perform a 

protected operation, have to ask the 

permission to do so. 

 Permissions can be seen like a declaration 

of intent. The application developer 

declares that the application want to 

perform a critical operation. 



Permissions in Manifest 

 Permissions are declared by developer in 

the manifest file, using a specific XML tag: 

 

<uses-permission android:name="string" /> 

 

 Android defines 120 permissions, identified 

by the name: 

android.permission.Permission 



Permission Levels 

 There are four levels of permissions: 

 Normal: Related to non-dangerous resources. 

Example: VIBRATION. 

 Dangerous: Related to critical resources and 

costly services. Example: SEND_SMS. 

 Signature: Permissions that can be required only 

by applications developed by the same 

developers. 

 Signature or System: Like signature, but can be 

required also by Android native applications. 

 



Permission Checker 

 The permission checker is the component 

that verifies at runtime, if an application 

that is going to perform a critical 

operation, has declared the related 

permissions. 

 If the permission has been declared the 

operation is allowed, otherwise the 

operation is denied. 
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Permission Verification (2) 
 The API functions that perform critical operations 

call the permission checker before doing any 
operation. 

 The permission checker verifies that the 
application has the permission related to critical 
operation that the function will perform. 

 If the permission has not been declared the 
operation is denied. The function throws a security 
exception for missing permission and no return is 
given from the function. 

 Generally the exception is not caught by the 
developer or the missing return is not handled, 
causing the application to crash. 



Static Permission VS Dynamic 

Verification 

 Permissions are declared statically in manifest 

files. Verification is performed dynamically.  

 It is possible that a developer call in the Java 

code a critical function without asking for the 

permission in the manifest file. 

 Programming error. No warning are raised! 

When including a potentially critical function 

control the API documentation to see the 
required permissions. 



Creating Permissions 
 A developer can define permissions to protect an 

application or components of an application. 

 If some operations performed by an application 
are critical on the side of security they should be 
protected. 

 <permission android:description="string resource" 
android:icon="drawable resource" 
android:label="string resource" 
android:name="string" 
android:permissionGroup="string" 
android:protectionLevel=["normal" | "dangerous" 
|"signature" | "signatureOrSystem"] /> 



Creating Permissions (2) 

 With a permission is possible to protect: 

 An activity 

 A service 

 An intent filter 

 The whole application. 

 The protected resource has to be 

specified in the android:name field of the 

permission. 



Malware 

 Starting from 2009 mobile platforms, 

especially Android, have become target 

of specific attacks. 

 The largest increase in malware number 

targeting Android devices has been 

observed in 2011. 

 Two main types: Trojans and Rootkits. 



Trojans 
 Hidden malicious code in good looking 

applications. These malware comes as normal 
applications that works fine (videogames, 
contact magers…). However in background 
these applications stealthy perform malicious 
behaviors. 

 Example of malicious behaviors: 
 Stealthy sent SMS messages. 

 Recording phone calls. 

 Send private data to external servers. 
 Subscription to premium services. 

 



Simple but Effective 

 These malware are hardly identified, they 

perform normal actions in a malicious 

way. 

 Example: Sending an SMS message is not 

a malicious action by itself. It becomes 

malicious if it is done stealthily, with 

undesired costs, or if the messages are 

sent to premium rate numbers. 



Rootkits 

 Malicious applications that take control of 
the device, generally exploiting some 
system weaknesses. 

 The application take root privileges and 
then perform strong attacks like:  

 Downloads and installs other malicious 
applications. 

 Delete user files. 

 Steal private data. 

 



Root Access 
 Shell and other applications are users without root 

privileges. 

 The command SU (switch user) has been disabled 
in the modified kernel version used by Android. 

 Rooting an Android device simply means to 
enable again the SU command. 

 The rooting method is different for each device. 
Generally is performed through a buffer overflow, 
where the instructions to install the SU command 
are pushed in the execution stack, exploiting 
system (hardware or software) vulnerabilities. 



Detect Malware With 

Permissions 

 Trojans can be recognized, sometimes, 

because they ask for non-justified 

permissions: 

 Why a videogame should ask to send SMS 

messages or perform phone calls? 

 Once the permission has been granted, the 

malware will legally perform the malicious 

behavior of sending messages. 

 



Weaknesses 
 Too coarse grained. For example the 

SEND_SMS permission does not give any 
specification on the number of outgoing SMS 
messages, neither the destination number is 
specified. 

 Accept all or deny. An application may ask 
for several permissions. If a single permission is 
not accepted, the application is not installed. 

 Rootkits are able to take control without 
asking for permissions. 



Weaknesses 
 Who is really enforcing the security policy of 

permissions? 

 The user!!  

 When user downloads an application and 
wants to install it, a list of the required 
permission is shown. Then the user chooses to 
accept them all or stop the installation.  

 According to some recent surveys more than 
60% of the users do not even know what 
permissions are. 



Permission Overdeclaration 
 The problem of permission overdeclaration is dual to 

the error of forgetting to declare a needed 
permission. 

 A developer declare in the manifest more 
permissions than those effectively required by the 
application. 

 This error is extremely common for at least two 
reasons: 
 Enthusiast developers with limited experience. 
 Name and description of permissions confusing. 

 The effect of permission overdeclaration is 
decreasing the attention that users put in reading 
permissions. 

 



Some Research Solutions 

 Allow the user to choose a subset of 

permissions for each application. 

 Tracking outgoing information and 

avoiding requests and transmission of 

private data. 

 TISSA: modification of the permission 

checker to avoid security exception and 

providing empty or bogus results. 



Some Research Solutions (2) 

 Definition of policies to avoid dangerous 

coupling of permissions. 

 An application that can access user private 

data, should not be allowed to connect to 

the network. 

 An application cannot send SMS when the 

user is not active. 



Some Research Solutions (3) 

 Profiling device, user and application 

behaviors.  

 Use statistics (Chi-Squared), probability 

(Markov Chain) or computational 

intelligence (ANN, Classifiers) to detect 

anomalies in the execution. 

 Extremely effective in detecting rootkits 

and trojans.  



Some Research Solutions (4) 

 Static classification of Android application 

analyzing declared permissions and other 

metadata. 

 Assigning a threat value to each 

permission and thus to each application. 

 Avoid permission overdeclaration, 

rewarding application that declare as less 

permissions as possible.  


