
 
Elements of applied cryptography 

Digital Signatures 

  Digital Signatures with appendix 

  Digital signatures with message recovery 

  Digital signatures based on RSA 
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Informal properties 

  DEFINITION. A digital signature is a number dependent on 
some secret known only to the signer and, additionally, on 
the content of the message being signed 

  PROPERTY. A digital signature must be verifiable, i.e., if a 
dispute arises an unbiased third party must be able to solve 
the dispute equitably, without requiring access to the 
signer's secret 
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Classification 

  Digital signatures with appendix 
•  require the original message as input to the verification algorithm; 
•  use hash functions 
•  Examples: ElGamal, DSA, DSS, Schnorr 

  Digital signatures with message recovery 
•  do not require the original message as input to the verification 

algorithm;  
•  the original message is recovered from the signature itself; 
•  Examples: RSA, Rabin, Nyberg-Rueppel 
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Digital signatures with appendix 
Definitions 
•  M is the message space 
•  h is a hash function with domain M  
•  Mh is the image of h 
•  S is the signature space 
Key generation 
•  Alice selects a private key which defines a signing algorithm SA which is a one-to-one 

mapping SA: Mh → S 
•  Alice defines the corresponding public key defining the verification algorithm VA such 

that VA(m*, s) = true if SA(m*) = s and false otherwise, for all m*∈ Mh and s∈S, where 
m* = h(m) for m ∈ M.  

•  The public key VA is constructed such that it may be computed without knowledge 
of the signer’s private key SA 



Digital signatures with appendix 
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The signing process 
M Mh S 

h SA 

m m* s 

Signature generation process 
•  Compute m* = h(m), s = SA(m*) 

•  Send (m, s) 
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Digital signatures with appendix 

Signature verification process 
•  Obtain A’s public key VA 

•  Compute m* = h(m), u = VA(m*, s) 

•  Accept the signature iff u = true 

Mh´ S
Boolean

(m*,s ) VA true

false
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Digital signatures with appendix 

Properties of SA and VA 

•  (efficiency) SA should be efficient to compute 

•  (efficiency) VA should be efficient to compute 

•  (security) It should be computationally infeasible for an 
entity other than A to find an m∈M and an s∈S such that  
VA(m*, s) = true, where m* = h(m) 



© Gianluca Dini Network Security 8 

Digital signature with message recovery 

Definitions 
•  M is the message space 
•  MS is the signing space 
•  S is the signature space 
Key generation 
•  A selects a private key defining a signing algorithm SA which is a 

one-to-one mapping SA: MS → S 
•  A defines the corresponding public key defining the verification 

algorithm VA such that VA•SA is identity map on MS.  
•  The public key VA is constructed such that it may be computed 

without knowledge of the signer’s private key SA 



Digital signature with message recovery 
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The signing process 

M 

MS 

S 

R SA 

m m* s 

MR 

• Compute m* = R(m), R is a redundancy function (invertible) 

• Compute s = SA(m*) 



Digital signature with message recovery 
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•  Obtain authentic public key VA 

•  Compute m* = V(s)  
► Verify if m* ∈ MS (if not, reject the signature) 
•  Recover the message m = R-1(m*) 

The signing process 

M 

MS 

S 

R SA 

m m* s 

MR 
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Digital signatures with message recovery 

Properties of SA and VA 

•  (efficiency) SA should be efficient to compute 

•  (efficiency) VA should be efficient to compute 

•  (security) It should be computationally infeasible for an 
entity other than A to find an s ∈ S such that VA(s) ∈ MR  
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Digital signatures with message recovery 
The redundancy function 

•  R and R-1 are publicly known 

•  Selecting an appropriate R is critical to the security of the system 

An example of bad redundancy function leading to existential forgery 

•  Let us suppose that MR  ≡ MS 

•  R and SA are bijections, therefore M and S have the same number of 
elements 

•  Therefore, for all s ∈ S, VA(s) ∈ MR. Therefore, it is “easy” to find an 
m for which s is the signature, m = R-1(VA(s)) 

•  s is a valid signature for m (existential forgery) 
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Digital signatures with message recovery 

A good redundancy function although too redundant 

•  Example 

•  M = {m : m ∈ {0, 1}n}, MS = {m : m ∈ {0, 1}2n} 

•  R: M → MS, R(m) = m||m (concatenation) 

•  MR ⊆ MS 

•  When n is large,  |MR|/|MS| = (1/2)n is small. Therefore, for an 
adversary it is unlikely to choose an s that yields VA(s)∈MR 

•  ISO/IEC 9776 is an international standard that defines a redundancy 
function for RSA and Rabin 
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Dig. sign. with appendix from message recovery 

  Signature generation 
•  Compute m* = R(h(m)), s = SA(m*) 
•  A’s digital signature for m is s 
∀ 〈m, s〉 are made available to anyone who may wish to verify the signature 

  Signature verification 
•  Obtain A’s public key VA 

•   Compute m* = R(h(m)), m′ = VA(s), and u = (m′ == m*) 
•  Accept the signature iff u = true 

  Comment 
•  R is not security critical anymore and can be any one-to-one mapping 
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Types of attacks 

BREAKING A SIGNATURE 

1.  Total break – adversary is able to compute the signer’s 

private key 

2.  Selective forgery – adversary controls the messages whose 

signature is forged  

3.  Existential forgery – adversary has no control on the 

messages whose signature is forged  



© Gianluca Dini Network Security 16 

Types of attacks 

BASIC ATTACKS 
  KEY-ONLY ATTACKS – adversary knows only the signer’s 

public key 
  MESSAGE ATTACKS 

a.  known-message attack  
  An adversary has signatures for a set of messages which are 
known by the adversary but not chosen by him 

a.  chosen-message attack 
 In this case messages are chosen by the adversary 

b.  adaptive chosen-message attack 
  In this case messages are adaptively chosen by the adversary 
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Attacks: considerations 

  Adaptive chosen-message attack 
•  It is the most difficult attack to prevent 
•  Although an adaptive chosen-message attack may be infeasible to mount in practice, a 

well-designed signature scheme should nonetheless be designed to protect against the 
possibility 

  The level of security may vary according to the application  
•  Example 1. When an adversary is only capable of mounting a key-only attack, it may 

suffice to design the scheme to prevent the adversary from being successful at selective 
forgery.  

•  Example 2. When the adversary is capable of a message attack, it is likely necessary to 
guard against the possibility of existential forgery. 
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Attacks: considerations 

  Hash functions and digital signature processes 
•  When a hash function h is used in a digital signature scheme (as is often 

the case), h should be a fixed part of the signature process  
so that an adversary is unable to take a valid signature, replace h with a 
weak hash function, and then mount a selective forgery attack. 

•  Example. Let 〈m, s〉 where s = SA(h(m)) .  
Let adversary be able to replace h with a weaker hash function g that is 
vulnerable to selective forgery. 
Then the adversary can   

1.  determine m′ such that g(m′) = h(m); and 
2.  replace m with m′  
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Digital signatures based on RSA 
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Introductory comments 

  Since the encryption transformation is a bijection, digital 
signatures can be created by reversing the roles of 
encryption and decryption 

  Digital signature with message recovery 
  MS ≡ S ≡ Vn 

  A redundancy function R: M →Vn is chosen and is public 
knowledge 
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Key generation 

1.  Generate two large, distinct primes p, q (100÷200 
decimal digits) 

2.  Compute n = p×q and φ = (p-1)×(q-1) 

3.  Select a random number 1 < e < φ such that gcd(e, φ) = 1 

4.  Compute the unique integer 1 < d < φ such that  
ed ≡ 1 mod φ

5.  (d, n) is the private key 

6.  (e, n) is the public key 

At the end of key generation, p and q must be destroyed 
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Signature generation and verification 

Signature generation. In order to sign a message m, A does 
the following  

1.  Compute m* = R(m) an integer in [0, n–1] 
2.  Compute s = m*d mod n  
3.  A’s signature for m is s 

Signature verification. In order to verify A’s signature s and 
recover message m, B does the following 

1.  Obtain A’s authentic public key (e, n)  
2.  Compute m* = se mod n 
3.  Verify that m* is in MR; if not reject the signature 
4.  Recover m = R-1(m*) 
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Proof that verification works 

  Theorem. If s is a signature for a message m, then s = 
m*d mod n where m* = R(m).  

  Proof. 

  Since ed = 1 (mod  φ), se  = m*ed = m* (mod n). 
Finally, R-1(m*) = R-1(R(m)) = m. 
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Possible attacks 

  Integer factorization 
  Factorization of n lead to total break.  

  A should choose p and q so that factoring n is a 
computationally infeasible task 

  Multiplicative property of RSA: requirement on R 
  A necessary condition for avoiding existential forgery is that R 

must not satisfy the multiplicative property.  
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RSA signature in practice 

Reblocking problem. If Alice wants to send Bob a secret and signed 
message to Bob then it must be nA < nB 

  There are various ways to solve the problem 
•  reordering: the operation with the smaller modulus is 

performed first; however the preferred order is always to sign 
first and encrypt later 

•  two moduli for entity: each entity has two moduli; moduli for 
signing (e.g., t-bits) are always smaller of all possible moduli 
for encryption (e.g., t+1-bits) 

•  ad-hoc format of the moduli 
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RSA signature in practice 

  Redundancy function 
•  A suitable redundancy function is necessary in order to avoid 

existential forgery 
•  IOS/IEC 9796 (1991) defines a mapping that takes a k-bit 

integer and maps it into a 2k-bits integer 

  The RSA digital signature scheme with appendix 
•  MD5 (128 bit) 
•  PKCS#1 specifies a redundancy function mapping 128-bit 

integer to a k-bit integer, where k is the modulus size (k ≥ 512, 
k = 768, 1024) 
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RSA signature in practice 

  Performance characteristics 
•  Let  p= q= k then 
•  signature generation requires O(k3) bit operations 
•  signature verification, in the case of small public exponent, 

requires O(k2) bit operations 
•  Suggested value for e in practice are 3 and 216+1. Of course, p and q 

must be chosen so that gcd(e, (p – 1)(q – 1)) = 1. 
•  The RSA signature scheme is ideally suited to situations where 

signature verification is the predominant operation being 
performed.  

•  Example. A trusted third party creates a public-key certificate for an entity 
A. This requires only one signature generation, and this signature may be 
verified many times by various other entities 
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RSA signature in practice 

  Parameter selection 
•  bitsize of the modulus: miminum 768; at least 1024 for signatures of 

longer lifetime or critical for overall security of a large network (i.e., 
the private key of a certification authority)  

•  No weaknesses have been reported when the public exponent e is 
chosen to be a small number such as 3 or 216+1.  

•  It is not recommended to restrict the size of the private exponent d in 
order to improve the efficiency of signature generation 

  Bandwidth efficiency 
•  By definition, BWE = log2 (MS) / log2 (MR) 
•  For (RSA, ISO/IEC 9796), BWE = 0.5, that is, with a 1024-bits 

modulus can be signed 512-bits messages 
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RSA signature in practice 

  System wide parameters 
•  Each entity must have a distinct RSA modulus; it is insecure to 

use a system-wide modulus 
•  The public exponent e can be a system-wide parameter, and is 

in many applications. In this case, the low exponent attack must 
be considered 

  Short vs. long messages 
•  Suppose n is a 2k-bit RSA modulus which is used to sign k-bit 

messages (i.e., BWE is 0.5) 
•  Suppose entity A wishes to sign a kt-bit message m 
•  For t = 1 RSA with message recovery is more efficient; 
•  For t > 1, RSA with appendix is more efficient 



RSA, hash functions and forgery 

•  Digital signature and preimage resistance 
•  Go to here. 
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DIGITAL SIGNATURES BASED 
ON ELGAMAL 

© Gianluca Dini Network Security 



© Gianluca Dini Network Security 32 

ElGamal’s digital signature 

Discrete Logarithm Systems 
  Let p be a prime, q a prime divisor of p–1 and g∈[1, p–1] 

has order q 

  Let x be the private key selected at random from [1, q–1] 

  Let y be the corresponding public key y = gx mod p 

Discrete Logarithm Problem (DLP) 
  Given (p, q, g) and y, determine x 
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ElGamal’s digital signature 

  Signature 
•  select k  ∈ Zp–1

* randomly 
•  r = gk mod p, s = (h(m)–xr)k–1 mod (p–1) 
•  The pair (r, s) is the digital signature for m 

  Verification 
•  Verify that 1 ≤ r ≤ p–1; if not reject the signature 
•  Compute v1 = yrrs mod p 
•  Compute h(m) and v2 = gh(m) mod p 
•  Accept the signature only if v1 = v2. 
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ElGamal’s digital signature 

Proof 

  If the digital signature (r, s) has been produced by Alice 
then s = (h(m)–xr)k–1 mod (p–1).  

  Multiplying both sides by k gives ks = (h(m)–xr) mod (p–
1). Rearranging yields h(m)≡ks+xr mod (p–1).  

  This implies that gh(m) ≡ gar+ks ≡ (gx)rrs mod p 

  Thus v1 = v2 as required. 
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ElGamal’s digital signature 
Security 

  In order to forge a signature, an adversary  can select k at random, 
compute r = gk mod p. Than he has to compute s = (h(m)–xr)k–1 mod (p–
1). If the DLP is computationally infeasible, the adversary can do no better 
than to choose an s at random; the success probability is 1/p which is 
negligible for large p. 

  A different k must be selected for different messages otherwise the secret 
key x can be revealed 

  If no hash function h is used, an adversary can easily mount an existential 
forgery attack. 

  If the check on r is not done, an adversary can sign messages of its choice 
provided it has one valid signature produced by Alice 

 



AUTHENTICATION VS  
NON-REPUDIATION 
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Non-repudiation 

  Non-repudiation prevents a signer from signing a document and 
subsequently being able to successfully deny having done so. 

  Non-repudiation vs authentication of origin 
•  Authentication (based on symmetric cyptography) allows a party to 

convince itself or a mutually trusted party of the integrity/authenticity 
of a given message at a given time t0 

•  Non-repudiation (based on public-key cyptography)  allows a party to 
convince others at any time t1 ≥ t0 of the integrity/authenticity of a given 
message at time t0 

 Alice’s digital signature for a given message depends on the message and 
a secret known to Alice only (the private key) 
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Non-repudiation 

  Data origin authentication as provided by a digital signature is valid only 
while the secrecy of the signer’s private key is maintained  

  A threat that must be addressed is a signer who intentionally discloses his 
private key, and thereafter claims that a previously valid signature was 
forged 

  This threat may be addressed by 
•  preventing direct access to the key 
•  use of a trusted timestamp agent 
•  use of a trusted notary agent 
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Thanks for attention! 


