Elements of applied cryptography Digital Signatures

- Digital Signatures with appendix
- Digital signatures with message recovery
- Digital signatures based on RSA

Informal properties

- DEFINITION. A digital signature is a number dependent on some secret known only to the signer and, additionally, on the content of the message being signed
- PROPERTY. A digital signature must be verifiable, i.e., if a dispute arises an unbiased third party must be able to solve the dispute equitably, without requiring access to the signer's secret

Classification

- Digital signatures with appendix
- require the original message as input to the verification algorithm;
- use hash functions
- Examples: EIGamal, DSA, DSS, Schnorr
- Digital signatures with message recovery
- do not require the original message as input to the verification algorithm;
- the original message is recovered from the signature itself;
- Examples: RSA, Rabin, Nyberg-Rueppel

Digital signatures with appendix

Definitions

- M is the message space
- h is a hash function with domain M
- M_{h} is the image of h
- S is the signature space

Key generation

- Alice selects a private key which defines a signing algorithm S_{A} which is a one-to-one mapping $S_{A}: M_{h} \rightarrow S$
- Alice defines the corresponding public key defining the verification algorithm V_{A} such that $V_{A}\left(m^{*}, s\right)=$ true if $S_{A}\left(m^{*}\right)=\mathbf{s}$ and false otherwise, for all $m^{*} \in M_{h}$ and $s \in S$, where $\mathrm{m}^{*}=\mathrm{h}(\mathrm{m})$ for $\mathrm{m} \in \mathrm{M}$.
- The public key V_{A} is constructed such that it may be computed without knowledge of the signer's private key S_{A}

Digital signatures with appendix

The signing process

Signature generation process

- Compute $\mathrm{m}^{*}=\mathrm{h}(\mathrm{m}), \mathrm{s}=\mathrm{S}_{\mathrm{A}}\left(\mathrm{m}^{*}\right)$
- Send (m, s)

Digital signatures with appendix

Signature verification process

- Obtain A^{\prime} s public key V_{A}
- Compute $\mathrm{m}^{*}=\mathrm{h}(\mathrm{m}), \mathbf{u}=\mathrm{V}_{\mathrm{A}}\left(\mathrm{m}^{*}, \mathrm{~s}\right)$
- Accept the signature iff $\mathbf{u}=$ true

Digital signatures with appendix

Properties of S_{A} and V_{A}

- (efficiency) S_{A} should be efficient to compute
- (efficiency) V_{A} should be efficient to compute
- (security) It should be computationally infeasible for an entity other than A to find an $m \in M$ and an $s \in S$ such that $V_{A}\left(m^{*}, s\right)=$ true, where $m^{*}=h(m)$

Digital signature with message recovery

Definitions

- \mathbf{M} is the message space
- $\mathbf{M}_{\mathbf{S}}$ is the signing space
- \mathbf{S} is the signature space

Key generation

- A selects a private key defining a signing algorithm S_{A} which is a one-to-one mapping $S_{A}: M_{S} \rightarrow S$
- A defines the corresponding public key defining the verification algorithm V_{A} such that $\mathrm{V}_{\mathrm{A}} \cdot \mathrm{S}_{\mathrm{A}}$ is identity map on M_{S}.
- The public key V_{A} is constructed such that it may be computed without knowledge of the signer's private key S_{A}

Digital signature with message recovery

The signing process

- Compute $m^{*}=R(m), R$ is a redundancy function (invertible)
- Compute $s=S_{A}\left(m^{*}\right)$

Digital signature with message recovery

The signing process

- Obtain authentic public key V_{A}
- Compute $m^{*}=V(s)$
- Verify if $m^{*} \in M_{S}$ (if not, reject the signature)
- Recover the message $m=R^{-1}\left(m^{*}\right)$

Digital signatures with message recovery

Properties of S_{A} and V_{A}

- (efficiency) S_{A} should be efficient to compute
- (efficiency) V_{A} should be efficient to compute
- (security) It should be computationally infeasible for an entity other than A to find an $s \in S$ such that $V_{A}(s) \in M_{R}$

Digital signatures with message recovery

The redundancy function

- R and R^{-1} are publicly known
- Selecting an appropriate R is critical to the security of the system

An example of bad redundancy function leading to existential forgery

- Let us suppose that $M_{R} \equiv M_{S}$
- R and S_{A} are bijections, therefore M and S have the same number of elements
- Therefore, for all $s \in S, V_{A}(s) \in M_{R}$. Therefore, it is "easy" to find an m for which s is the signature, $m=R^{-1}\left(V_{A}(s)\right)$
- s is a valid signature for m (existential forgery)

Digital signatures with message recovery

A good redundancy function although too redundant

- Example
- $M=\left\{m: m \in\{0,1\}^{n}\right\}, M_{s}=\left\{m: m \in\{0,1\}^{2 n}\right\}$
- $R: M \rightarrow M_{S}, R(m)=m| | m$ (concatenation)
- $M_{R} \subseteq M_{S}$
- When n is large, $\left|M_{R}\right| /\left|M_{S}\right|=(1 / 2)^{n}$ is small. Therefore, for an adversary it is unlikely to choose an s that yields $V_{A}(s) \in M_{R}$
- ISO/IEC 9776 is an international standard that defines a redundancy function for RSA and Rabin

Dig. sign. with appendix from message recover

- Signature generation
- Compute $\mathrm{m}^{*}=R(h(m)), s=S_{A}\left(m^{*}\right)$
- A' s digital signature for m is s
$\forall\langle m, s\rangle$ are made available to anyone who may wish to verify the signature
- Signature verification
- Obtain A's public key V_{A}
- Compute $m^{*}=R(h(m)), m^{\prime}=V_{A}(s)$, and $u=\left(m^{\prime}==m^{*}\right)$
- Accept the signature iff $u=$ true
- Comment
- R is not security critical anymore and can be any one-to-one mapping

Types of attacks

BREAKING A SIGNATURE

1. Total break - adversary is able to compute the signer's private key
2. Selective forgery - adversary controls the messages whose signature is forged
3. Existential forgery - adversary has no control on the messages whose signature is forged

Types of attacks

BASIC ATTACKS

- KEY-ONLY ATTACKS - adversary knows only the signer's public key
- MESSAGE ATTACKS
a. known-message attack

An adversary has signatures for a set of messages which are
known by the adversary but not chosen by him
a. chosen-message attack

In this case messages are chosen by the adversary
b. adaptive chosen-message attack

In this case messages are adaptively chosen by the adversary

Attacks: considerations

- Adaptive chosen-message attack
- It is the most difficult attack to prevent
- Although an adaptive chosen-message attack may be infeasible to mount in practice, a well-designed signature scheme should nonetheless be designed to protect against the possibility
- The level of security may vary according to the application
- Example 1. When an adversary is only capable of mounting a key-only attack, it may suffice to design the scheme to prevent the adversary from being successful at selective forgery.
- Example 2. When the adversary is capable of a message attack, it is likely necessary to guard against the possibility of existential forgery.

Attacks: considerations

- Hash functions and digital signature processes
- When a hash function \boldsymbol{h} is used in a digital signature scheme (as is often the case), \boldsymbol{h} should be a fixed part of the signature process so that an adversary is unable to take a valid signature, replace h with a weak hash function, and then mount a selective forgery attack.
- Example. Let $\langle\boldsymbol{m}, \boldsymbol{s}\rangle$ where $\boldsymbol{s}=S_{A}(\boldsymbol{h}(\boldsymbol{m})$) .

Let adversary be able to replace \boldsymbol{h} with a weaker hash function \boldsymbol{g} that is vulnerable to selective forgery.
Then the adversary can

1. determine m^{\prime} such that $g\left(m^{\prime}\right)=h(m)$; and
2. replace m with \boldsymbol{m}^{\prime}

Digital signatures based on RSA

Introductory comments

- Since the encryption transformation is a bijection, digital signatures can be created by reversing the roles of encryption and decryption
- Digital signature with message recovery
- $M_{S} \equiv S \equiv V_{n}$
- A redundancy function $\mathrm{R}: \mathrm{M} \rightarrow \mathrm{V}_{\mathrm{n}}$ is chosen and is public knowledge

Key generation

1. Generate two large, distinct primes $p, q(100 \div 200$ decimal digits)
2. Compute $n=p \times q$ and $\phi=(p-1) \times(q-1)$
3. Select a random number $1<e<\phi$ such that $\operatorname{gcd}(e, \phi)=1$
4. Compute the unique integer $1<d<\phi$ such that $e d \equiv 1 \bmod \phi$
5. (d, n) is the private key
6. (e, n) is the public key

At the end of key generation, p and q must be destroyed

Signature generation and verification

Signature generation. In order to sign a message m, A does the following

1. Compute $\mathrm{m}^{*}=\mathrm{R}(\mathrm{m})$ an integer in $[0, \mathrm{n}-1]$
2. Compute $s=m^{* d} \bmod n$
3. A's signature for m is s

Signature verification. In order to verify A's signature s and recover message m, B does the following

1. Obtain A's authentic public key (e, n)
2. Compute $\mathrm{m}^{*}=\mathrm{s}^{\mathrm{e}} \operatorname{modn}$
3. Verify that m^{*} is in M_{R}; if not reject the signature
4. Recover $m=R^{-1}\left(m^{*}\right)$

Proof that verification works

- Theorem. If s is a signature for a message m, then $s=$ $m^{* d} \bmod n$ where $m^{*}=R(m)$.
- Proof.
- Since ed $=1(\bmod \phi), s^{e}=m^{* e d}=m^{*}(\bmod n)$. Finally, $R^{-1}\left(m^{*}\right)=R^{-1}(R(m))=m$.

Possible attacks

- Integer factorization
- Factorization of \boldsymbol{n} lead to total break.
- A should choose \boldsymbol{p} and \boldsymbol{q} so that factoring \boldsymbol{n} is a computationally infeasible task
- Multiplicative property of RSA: requirement on R
- A necessary condition for avoiding existential forgery is that R must not satisfy the multiplicative property.

RSA signature in practice

Reblocking problem. If Alice wants to send Bob a secret and signed message to Bob then it must be $n_{A}<n_{B}$

- There are various ways to solve the problem
- reordering: the operation with the smaller modulus is performed first; however the preferred order is always to sign first and encrypt later
- two moduli for entity: each entity has two moduli; moduli for signing (e.g., t-bits) are always smaller of all possible moduli for encryption (e.g., t+1-bits)
- ad-hoc format of the moduli

RSA signature in practice

- Redundancy function
- A suitable redundancy function is necessary in order to avoid existential forgery
- IOS/IEC 9796 (1991) defines a mapping that takes a k-bit integer and maps it into a 2k-bits integer
- The RSA digital signature scheme with appendix
- MD5 (128 bit)
- PKCS\#1 specifies a redundancy function mapping 128-bit integer to a k-bit integer, where k is the modulus size ($k \geq 512$, $k=768,1024)$

RSA signature in practice

- Performance characteristics
- Let $|\mathrm{p}|=|\mathrm{q}|=\mathrm{k}$ then
- signature generation requires $\mathbf{O}\left(\mathrm{k}^{3}\right)$ bit operations
- signature verification, in the case of small public exponent, requires $\mathbf{O}\left(\mathrm{k}^{2}\right)$ bit operations
- Suggested value for \mathbf{e} in practice are 3 and $2^{16}+1$. Of course, p and q must be chosen so that $\operatorname{gcd}(e,(p-1)(q-1))=1$.
- The RSA signature scheme is ideally suited to situations where signature verification is the predominant operation being performed.
- Example. A trusted third party creates a public-key certificate for an entity
A. This requires only one signature generation, and this signature may be verified many times by various other entities

RSA signature in practice

- Parameter selection
- bitsize of the modulus: miminum 768; at least 1024 for signatures of longer lifetime or critical for overall security of a large network (i.e., the private key of a certification authority)
- No weaknesses have been reported when the public exponent e is chosen to be a small number such as 3 or 2^{16+1}.
- It is not recommended to restrict the size of the private exponent d in order to improve the efficiency of signature generation
- Bandwidth efficiency
- By definition, BWE $=\log 2\left(\left|\mathrm{M}_{\mathrm{S}}\right|\right) / \log 2\left(\left|\mathrm{M}_{\mathrm{R}}\right|\right)$
- For (RSA, ISO/IEC 9796), BWE = 0.5, that is, with a 1024-bits modulus can be signed 512-bits messages

RSA signature in practice

- System wide parameters
- Each entity must have a distinct RSA modulus; it is insecure to use a system-wide modulus
- The public exponent e can be a system-wide parameter, and is in many applications. In this case, the low exponent attack must be considered
- Short vs. long messages
- Suppose n is a 2 k -bit RSA modulus which is used to sign k -bit messages (i.e., BWE is 0.5)
- Suppose entity A wishes to sign a kt-bit message m
- For $t=1$ RSA with message recovery is more efficient;
- For $t>1$, RSA with appendix is more efficient

RSA, hash functions and forgery

- Digital signature and preimage resistance
- Go to here.

DIGITAL SIGNATURES BASED ON ELGAMAL

Network Security

© Gianluca Dini

ElGamal's digital signature

Discrete Logarithm Systems

- Let p be a prime, q a prime divisor of $p-1$ and $g \in[1, p-1]$ has order q
- Let x be the private key selected at random from [1, $q-1$]
- Let y be the corresponding public key $y=g^{x} \bmod p$

Discrete Logarithm Problem (DLP)

- Given (p, q, g) and y, determine x

ElGamal's digital signature

- Signature
- select $k \in Z_{\mathrm{p}-1}{ }^{*}$ randomly
- $r=g^{k} \bmod p, \mathrm{~s}=(h(m)-x r) k^{-1} \bmod (\mathrm{p}-1)$
- The pair (r, s) is the digital signature for m
- Verification
- Verify that $1 \leq r \leq p-1$; if not reject the signature
- Compute $v_{1}=y^{r} r^{s} \bmod p$
- Compute $h(m)$ and $v_{2}=g^{h(m)} \bmod p$
- Accept the signature only if $v_{1}=v_{2}$.

ElGamal's digital signature

Proof

- If the digital signature (r, s) has been produced by Alice then $\mathrm{s}=(h(m)-x r) k^{-1} \bmod (\mathrm{p}-1)$.
- Multiplying both sides by k gives $k s=(h(m)-x r) \bmod (p-$ 1). Rearranging yields $h(m) \equiv k s+x r \bmod (p-1)$.
- This implies that $g^{h(m)} \equiv g^{a r+k s} \equiv\left(g^{x}\right)^{r} r^{s} \bmod p$
- Thus $v_{1}=v_{2}$ as required.

ElGamal's digital signature

Security

- In order to forge a signature, an adversary can select \boldsymbol{k} at random, compute $r=g^{k} \bmod p$. Than he has to compute $s=(h(m)-x r) k^{-1} \bmod (p-$ 1). If the DLP is computationally infeasible, the adversary can do no better than to choose an s at random; the success probability is $1 / p$ which is negligible for large p.
- A different k must be selected for different messages otherwise the secret key x can be revealed
- If no hash function h is used, an adversary can easily mount an existential forgery attack.
- If the check on r is not done, an adversary can sign messages of its choice provided it has one valid signature produced by Alice

AUTHENTICATION VS NON-REPUDIATION

Network Security

© Gianluca Dini

Non-repudiation

- Non-repudiation prevents a signer from signing a document and subsequently being able to successfully deny having done so.
- Non-repudiation vs authentication of origin
- Authentication (based on symmetric cyptography) allows a party to convince itself or a mutually trusted party of the integrity/authenticity of a given message at a given time t_{0}
- Non-repudiation (based on public-key cyptography) allows a party to convince others at any time $t_{1} \geq t_{0}$ of the integrity/authenticity of a given message at time t_{0}

Alice's digital signature for a given message depends on the message and a secret known to Alice only (the private key)

Non-repudiation

- Data origin authentication as provided by a digital signature is valid only while the secrecy of the signer's private key is maintained
- A threat that must be addressed is a signer who intentionally discloses his private key, and thereafter claims that a previously valid signature was forged
- This threat may be addressed by
- preventing direct access to the key
- use of a trusted timestamp agent
- use of a trusted notary agent

Thanks for attention!

