Hash functions and data integrity

- Manipulation Detection Code (MDC)
- Message Authentication Code (MAC)
- Data integrity and origin authentication
Data integrity and data origin authentication

- **Message integrity** is the property whereby data has not been altered in an *unauthorized* manner since the time it was created, transmitted, or stored by an *authorized* source.

- **Message origin authentication** is a type of authentication whereby a party is corroborated as the (original) source of specified data created at some time in the past.

- **Data origin authentication includes data integrity** and vice versa.
Hash function: informal properties

- The hash (fingerprint, digest) of a message must be
 - "easy" to compute
 - "unique"
 - "difficult" to invert

- The hash of a message can be used to
 - guarantee the integrity and authentication of a message
 - "uniquely" represent the message
Hash function

Nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura
che' la diritta via era smarrita.

Ahi quanto a dir qual era e` cosa dura
esta selva selvaggia e aspra e forte
che nel pensier rinova la paura!

MD5

d94f32933386d5abef6475313755e94

128 bit The hash size is fixed, generally smaller than the message size
Basic properties

- A hash function maps bitstrings of arbitrary, finite length into bitstrings of fixed size

- A hash function is a function h which has, as minimum, the following properties
 - **Compression** – h maps an input x of arbitrary finite length to an output $h(x)$ of fixed bitlength m
 - **Ease of computation** – given an input x, $h(x)$ is easy to compute

- A hash function is **many-to-one** and thus implies collisions
Additional security properties (MDC)

A hash function may have one or more of the following additional security properties

- **Preimage resistance (one-way)** – for essentially all pre-specified outputs, it is computationally infeasible to find any input which hashes to that output, i.e., to find \(x \) such that \(y = h(x) \) given \(y \) for which \(x \) is not known

- **2nd-preimage resistance (weak collision resistance)** – it is computationally infeasible to find any second input which has the same output as any specified input, i.e., given \(x \), to find \(x' \neq x \) such that \(h(x) = h(x') \)

- **Collision resistance (strong collision resistance)** – it is computationally infeasible to find any two distinct inputs \(x, x' \) which hash to the same output, i.e., such that \(h(x) = h(x') \)
Motivation of properties

- **2nd-preimage resistance**
 - Digital signature with appendix \((S, V)\)
 - \(s = S(h(m))\) is the digital signature for \(m\)
 - A trusted third party chooses a message \(m\) that Alice signs producing \(s = S_{A}(h(m))\)
 - If \(h\) is not 2nd-preimage resistant, an adversary (e.g. Alice herself) can
 - determine a 2nd-preimage \(m'\) such that \(h(m') = h(m)\) and
 - claim that Alice has signed \(m'\) instead of \(m\)
Motivation of properties

- **Collision resistance**

 - Digital signature with appendix \((S, V)\)
 - \(s = S(h(m))\) is the digital signature for \(m\)
 - If \(h()\) is not collision resistant, Alice (an untrusted party) can
 - choose \(m\) and \(m'\) so that \(h(m) = h(m')\)
 - compute \(s = S_A(h(m))\)
 - issue \(\langle m, s \rangle\) to Bob
 - later claim that she actually issued \(\langle m', s \rangle\)
Motivation of properties

- **Preimage resistance**
 - Digital signature scheme based on **RSA**:
 - \((n, d)\) is a private key; \((n, e)\) is a public key
 - A digital signature \(s\) for \(m\) is \(s = (h(m))^d \mod n\)
 - If \(h\) is not preimage resistance an adversary can
 - select \(z < n\), compute \(y = z^e \mod n\) and find \(m'\) such that \(h(m') = y\);
 - claim that \(z\) is a digital signature for \(m'\) (existential forgery)
MDC classification

- A **one-way hash function (OWHF)** is a hash function h with the following properties:
 - preimage resistance
 - 2-nd preimage resistance
- OWHF is also called weak one-way hash function
- A **collision resistant hash function (CRHF)** is a hash function h with the following properties
 - 2-nd preimage resistance
 - collision resistance
- CRHF is also called strong one-way hash function
Relationship between properties

- Collision resistance implies 2-nd preimage resistance
- Collision resistance does not imply preimage resistance
 - However, in practice, CRHF almost always has the additional property of preimage resistance
Objective of adversaries vs MDC

- **Attack to a OWHF**
 - given a hash value \(y \), find a preimage \(x \) such that \(y = h(x) \); or
 - given a pair \((x, h(x)) \), find a second preimage \(x' \) such that \(h(x) = h(x') \)

- **Attack to a CRHF**
 - find any two inputs \(x, x' \), such that \(h(x) = h(x') \)

<table>
<thead>
<tr>
<th>Hash type</th>
<th>Design goal</th>
<th>Ideal strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWHF</td>
<td>preimage resistance</td>
<td>(2^m)</td>
</tr>
<tr>
<td></td>
<td>2nd-preimage resistance</td>
<td>(2^m)</td>
</tr>
<tr>
<td>CRHF</td>
<td>collisione resistance</td>
<td>(2^{m/2})</td>
</tr>
</tbody>
</table>
Severity of practical consequences of an attack depends on the degree of control an adversary has over the message x for which an MDC may be forged.

- **Selective forgery**: the adversary has complete or partial control over x.

- **Existential forgery**: the adversary has no control over x.
Algorithm independent attacks

- Assumptions
 1. Treat an hash functions as a "black box";
 2. Only consider the output bitlength m;
 3. hash approximates a random variable

- Specific attacks
 - Guessing attack: find a preimage ($O(2^m)$)
 - Birthday attack: find a collision ($O(2^{m/2})$)
 - Precomputation of hash values: if r pairs of a OWHF are precomputed and tabulated the probability of finding a second preimage increases to r times its original value
 - Long-message attack for 2nd preimage: for "long" messages, a 2nd preimage is generally easier to find than a preimage
Guessing attack

Problem: given \((x, h(x))\), find a 2nd-preimage \(x'\)

Algorithm

```
repeat
  x' ← random(); // guessing
until h(x) = h(x')
```

- Every step requires an hash computation and a random number generation that are efficient operations
- Storage and data complexity is negligible

Assumption 3 implies that, on average \(O(2^m)\) "guesses" are necessary to determine a 2nd-preimage
The birthday paradox

- In a room of 23 people, the probability that at least a person is born on 25 December is $\frac{23}{365} = 0.063$
 - **Proof.** $P = \frac{1}{365} + \ldots + \frac{1}{365}$ (23 times) = 0.063

- In a room of 23 people, the probability that at least 2 people have the same birthday is **0.507**
 - **Proof.** Let P be the probability we want to calculate. Let Q be the probability of the complementary event, $Q = 1 - P$.

 $Q = \left(\frac{364}{365}\right) \times \left(\frac{363}{365}\right) \times \ldots \times \left(\frac{343}{365}\right) = 0.493$

 $P = 0.507$
The birthday paradox

- An urn has \(m \) balls numbered 1 to \(m \). Suppose that \(n \) balls are drawn from the urn one at a time, with replacement, and their numbers are listed.

- The probability of at least one coincidence (i.e., a ball drawn at least twice) is

\[
1 - \exp\left(-\frac{n^2}{2m}\right), \text{ if } m \to \infty \text{ and } n = O(\sqrt{m})
\]

- As \(m \to \infty \), the expected number of draws before a coincidence is

\[
\sqrt{\frac{\Pi m}{2}}.
\]
The Yuval's attack

Objective

Let x_1 be the legitimate message and x_2 be a fraudulent message.

By applying "small" variations to x_1 and x_2 find x'_1 and x'_2 s.t.

$$h(x'_1) = h(x'_2)$$

An adversary signs or lets someone sign x'_1 and later claims that x'_2 has been signed instead.
The Yuval's attack

- Generate t variations x_1' of x_1 and store the couple $(x, h(x_1'))$ in table T
 (time and storage complexity $O(t)$)

- repeat

 generate a new variation x_2' for x_2
 until $h(x_2')$ is in the table T;
 return the corresponding variation x_1' for x_1

If $t = 2^m$, we can obtain a collision after $N = H/t$ trials with probability equal to 1

(if $t = 2^{m/2}$, then $N = 2^{m/2}$)
Ideal security

- **Design goal**

The best possible attacks should require no less than $O(2^m)$ to find a preimage and $O(2^{m/2})$ to find a collision.

- **Ideal security**

given y, producing a preimage or a 2nd-preimage requires 2^m operations

given x, producing a collision requires $2^{m/2}$ operations
General model of iterated hash functions

arbitrary length input

iterative compression function

fixed length output

optional output transformation

output

Preprocessing

append padding bits

append block length

formatted input

fixed input

$H_0 = IV$

H_{i-1}

f

H_i

H_t

g

output $h(x) = g(H_i)$

Compression function

Network Security © Gianluca Dini 21
MDC may be categorized based on the nature of the operations comprising their internal compression functions

- Hash functions based on block ciphers
- Ad-hoc hash functions
- Hash functions based on modular arithmetic
Upper bounds of strength

<table>
<thead>
<tr>
<th>Hash Function</th>
<th>n</th>
<th>m</th>
<th>Preimage</th>
<th>Collision</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matyas-Meyer-Oseas</td>
<td>n</td>
<td>m</td>
<td>2^n</td>
<td>$2^{n/2}$</td>
<td>cifrario</td>
</tr>
<tr>
<td>MDC-2 (con DES)</td>
<td>64</td>
<td>128</td>
<td>2×2^{82}</td>
<td>2×2^{54}</td>
<td>cifrario</td>
</tr>
<tr>
<td>MDC-4 (con DES)</td>
<td>64</td>
<td>128</td>
<td>2^{109}</td>
<td>2×2^{54}</td>
<td>cifrario</td>
</tr>
<tr>
<td>Merkle (con DES)</td>
<td>106</td>
<td>128</td>
<td>2^{112}</td>
<td>2^{56}</td>
<td>cifrario</td>
</tr>
<tr>
<td>MD4*</td>
<td>512</td>
<td>128</td>
<td>2^{128}</td>
<td>2^{20}</td>
<td>ad-hoc</td>
</tr>
<tr>
<td>MD5</td>
<td>512</td>
<td>128</td>
<td>2^{128}</td>
<td>2^{64}</td>
<td>ad-hoc</td>
</tr>
<tr>
<td>RIPEMD-128</td>
<td>512</td>
<td>128</td>
<td>2^{128}</td>
<td>2^{64}</td>
<td>ad-hoc</td>
</tr>
<tr>
<td>SHA-1, RIPEMD-160</td>
<td>512</td>
<td>160</td>
<td>2^{160}</td>
<td>2^{80}</td>
<td>ad-hoc</td>
</tr>
</tbody>
</table>

*block size: n
*output size: m

bitsize for practical security
OWHF: $m \geq 80$
CRHF: $m \geq 160$
An example

Alice wants to be able to prove that, at a given time t, she held a document m without revealing it.

Alice can exhibit m, t, s.

$d = h(m)$

$\langle Alice, d \rangle$

$\langle Notary, t, s \rangle$

$Notary$

$t = \text{clock}()$

$s = S(\text{PRIV}_N, (d, t))$

Digital signature indissolubly links d to t.
The purpose of **MDC**, in conjunction with other mechanisms (authentic channel, encryption, digital signature), is to provide message integrity.
An insecure system made of secure components

MDC alone is not sufficient to provide data integrity
Integrity with MDC

MDC and an authentic channel
- physically authentic channel
- digital signature

MDC and encryption
- \(E_k(x, h(x)) \)
 - confidentiality and integrity
 - \(h \) may be weaker
 - as secure as \(E \)

- \(x, E_k(h(x)) \)
 - \(h \) must be collision resistant
 - \(k \) must be used only for integrity
 (risk of selective forgery)

- \(E_k(x), h(x) \)
 - \(h \) must be collision resistant
 - \(h \) can be used to check a guessed \(x \)
Message Authentication Code (MAC)
Message Authentication Code

The purpose of **MAC** is to provide **message authentication by symmetric techniques** (without the use of any additional mechanism)

Alice and Bob share a secret key

OK!?
Definition. A MAC algorithm is a family of functions h_k, parametrized by a *secret* key k, with the following properties:

ease of computation – Given a function h_k, a key k and an input x, $h_k(x)$ is *easy to compute*

compression – h_k maps an input x of arbitrary finite bitlength into an output $h_k(x)$ of fixed length n.

computation-resistance – for each key k, given zero or more $(x_i, h_k(x_i))$ pairs, it is *computationally infeasible* to compute $(x, h_k(x))$ for any new input $x \neq x_i$ (including possible $h_k(x) = h_k(x_i)$ for some i).
Message Authentication Code

- **MAC forgery** occurs if computation-resistance does not hold
- Computation resistance implies key non-recovery (but not vice versa)
- MAC definition says nothing about preimage and 2nd-preimage for parties knowing \(k \)
- For an adversary not knowing \(k \)
 - \(h_k \) must be 2nd-preimage and collision resistant;
 - \(h_k \) must be preimage resistant w.r.t. a chosen-text attack;
Attacks to MAC

- **Adversary’s objective**
 - without prior knowledge of k, compute a new text-MAC pair $(x, h_k(x))$, for some $x \neq x_i$, given one or more pairs $(x_i, h_k(x_i))$

- **Attack scenarios for adversaries with increasing strength:**
 - known-text attack
 - chosen-text attack
 - adaptive chosen-text attack

- A MAC algorithm should withstand adaptive chosen-text attack regardless of whether such an attack may actually be mounted in a particular environment
Types of forgery

- Forgery allows an adversary to have a forged text accepted as authentic

Classification of forgeries
- *Selective forgeries*: an adversary is able to produce text-MAC pairs of text of his choice
- *Existential forgeries*: an adversary is able to produce text-MAC pairs, but with no control over the value of that text

Comments
- Key recovery allows both selective and existential forgery
- Even an existential forgery may have severe consequences
An example of existential forgery

Mr. Lou Cipher

- knows that € is a small number
- esistentially forges a pair (€', h_k(€')) with €' uniformly distributed in [0, 2^{32} – 1] \((P_{\text{forgery}} = 1 - \frac{€}{2^{32}}) \)
- substitutes (€, h_k(€)) with (€', h_k(€'))
An example of existential forgery

known to be "small"

\mathcal{E} $h_k(\mathcal{E})$

substitute

\mathcal{E}' $h_k(\mathcal{E}')$

Countermeasure

Messages whose integrity or authenticity has to be verified are constrained to have pre-determined structure or a high degree of verifiable redundancy

For example: change \mathcal{E} into $\mathcal{E} \rightarrow \mathcal{E}$
Let h_k be a MAC algorithm.

Then h_k is, against a chosen-text attack by an adversary not knowing key k,

- 2nd-preimage and collision resistance, and
 - PROOF. Computation resistance implies that MAC cannot be even computed without the knowledge of k

- preimage resistant
 - PROOF BY CONTRADICTION.

Let us suppose that h is not preimage resistance. Then, given a randomly-selected hash value y it is possible to recover the preimage x. But this violates computation resistance
Security objectives

Let h_k be a MAC algorithm with a t-bit key and an m-bit output.

<table>
<thead>
<tr>
<th>Design Goal</th>
<th>Ideal strength</th>
<th>Adversary's Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>key non-recovery</td>
<td>2^t</td>
<td>deduce k</td>
</tr>
<tr>
<td>computational</td>
<td>$P_f = \max(2^{-t}, 2^{-m})$</td>
<td>produce new (text, MAC)</td>
</tr>
<tr>
<td>resistance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P_f is the probability of forgery by correctly guessing a MAC.

bitsize for practical security

- $m \geq 64$ bit
- $t \geq 64 \div 80$ bit
Implementation

- MAC based on block-cipher
 - CBC-based MAC

- MAC based on MDC
 - The MAC key should be involved at both the start and the end of the MAC computation

- Customized MAC (MAA, MD5-MAC)

- MAC for stream ciphers
Data integrity

Data integrity using MAC alone

• $x, h_k(x)$

Data integrity using an MDC and an authentic channel

• message x is transmitted over an insecure channel
• MDC is transmitted over the authentic channel (telephone, daily newspaper,…)

Network Security © Gianluca Dini
Data integrity

Data integrity combined with encryption (...)

• Encryption alone does not guarantee data integrity
 • reordering of ECB blocks
 • encryption of random data
 • bit manipulation in additive stream cipher and DES ciphertext blocks

• Data integrity using encryption and an MDC (...)
 • \(C = E_k(x, h(x)) \)
 – \(h(x) \) deve soddisfare proprietà più deboli rispetto a quelle necessarie per la firma digitale
 – La sicurezza del meccanismo di integrità è pari al più a quella cifrario
Data integrity combined with encryption

• Data integrity using encryption and an MDC

soluzioni sconsigliabili

• \((x, E_k(h(x)))\) \(h\) must be collision resistant, otherwise pairs \((x, x')\) with colliding outputs can be verifiably pre-determined without the knowledge of \(k\)

• \(E_k(x), h(x)\) – little computational savings with respect to encrypt \(x\) and \(h(x)\); \(h\) must be collision resistant; correct guesses of \(x\) can be confirmed
Data integrity

Data integrity using encryption and a MAC

\[C = E_{k_1}(x, h_{k_2}(x)) \]

- Pros w.r.t. MDC
 » Should \(E \) be defeated, \(h \) still guarantees integrity
 » \(E \) precludes an exhaustive key search attack on \(h \)

- Cons w.r.t. MDC
 » Two keys instead of one

- Recommendations
 » \(k_1 \) and \(k_2 \) should be different
 » \(E \) and \(h \) should be different

Network Security © Gianluca Dini
Data integrity

Data integrity using encryption and a MAC

Alternatives

1. $E_{k_1}(x)$, $h_{k_2}(E_{k_1}(x))$
 - allow authentication without knowledge of plaintext
 - no guarantee that the party creating MAC knew the plaintext

2. $E_{k_1}(x)$, $h_{k_2}(x)$.
 - E and h cannot compromise each other
Comments

- Data origin mechanisms based on shared keys (e.g., MACs) do not provide non-repudiation of data origin.

- While MAC (and digital signatures) provide data origin authentication, they provide no inherent uniqueness or timeliness guarantees.

To provide these guarantees, data origin mechanisms can be augmented with **time variant parameters**:

- timestamps
- sequence numbers
- random numbers
Resistance properties

Resistance properties required for specified data integrity applications

<table>
<thead>
<tr>
<th>Integrity application</th>
<th>Preimage resistant</th>
<th>2nd-preimage resistant</th>
<th>Collision resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDC + asymmetric signature</td>
<td>yes</td>
<td>yes</td>
<td>yes†</td>
</tr>
<tr>
<td>MDC + authentic channel</td>
<td></td>
<td>yes</td>
<td>yes†</td>
</tr>
<tr>
<td>MDC + symmetric encryption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hash for one-way password file</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC (key unknown to attacker)</td>
<td>yes</td>
<td>yes</td>
<td>yes†</td>
</tr>
<tr>
<td>MAC (key known to attacker)</td>
<td></td>
<td>yes†</td>
<td></td>
</tr>
</tbody>
</table>

† Resistance required if chosen message attack
‡ Resistance required in the rare case of multi-cast authentication