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Μ: message space 
C: ciphertext space 
Κ: keyspace 

encryption transformation 

decryption transformation 

∀ ∈ ∀ ∈ ∃ ∈ =M K: K:, , : ( , ( , ))m e d m D d E e m

It is computationally “easy” to compute d knowing 
e, and viceversa 

Two properties 

In most practical symmetric encryption scheme e = d 

E:P !K"C

D: C !K" P



Security of a symmetric cipher 

  An informal definition 
  Let (E, D) a symmetric encryption scheme 

  For each pair (m, c), such that c = E(e, m) and m = 
D(e, c) the symmetric cipher (E, D) is secure iff 

  Given c, it is difficult to determine m without 
knowing e, and viceversa 

  Given c and m, it is difficult to determine e, unless 
it is used just once 
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2-party comm with symmetric encryption 
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key source 

E(e,m) 

m 

D(d, c) 

m 

Alice Bob 

c 

e 

unsecure channel 

adversary 

secure(*) channel 

(*) the channel is not physically accessible to the adversary and ensures both confidentiality 
and integrity 

•  Alice and Bob know E and D 

•  Alice and Bob trust each other 

•  key e is a shared secret between Alice 
and Bob 



Discussion 
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  How can Bob be sure that m = D(k,c) is good? 

 Bob knows m in advance 

 Bob knows a part of m in advance (e.g., email) 

 Bob knows that m has certain structural redundancies 
(e.g., ASCII) 



Discussion 
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EXAMPLE (DES-CBC) 

  Bob receives    

  c =  f3 9e 8a 73 fc 76 2d 0f  
   59 43 bd 85 c3 c9 89 d2  
   bf 96 b6 4f 34 b8 51 dd 

  Bob deciphers c with  
  k =  0x3dd04b6d14a437a9  

  Bob obtains 
  m =  “Ci vediamo alle 20!” 
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Discussion 

 What is the effect of a “small” change in the 
ciphertext?  

  Single bit change 

 c[0]7 = ~c[0]7 (73 9e 8a 73 fc ...) 

 m′=“e8¢biö=}o alle 20:00!” 

  Single byte change  

 c[c.lenght() - 1] = 0x00 (... 34 b8 51 00) 

 m′=“Ci vediamo alle "}2gÀlõ” 
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Discussion 

  Upon seeing m, Bob believes that: 

 only Alice saw message m (privacy) 

 message m comes from Alice (?provenience?) 

 message m has not been modified (?integrity?) 
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On trust 

 What does “Alice and Bob trust each other” mean? 

  Alice (Bob) believes that Bob (Alice) does not reveal m 

  Alice (Bob) believes that Bob (Alice) keeps key e secret, i.e., 

 Alice (Bob) believes that Bob (Alice) is competent to do 
key management 

 Alice (Bob) believes that Bob (Alice) does not reveal the 
key 



Perfect ciphers 
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Cifrario perfetto 
  Intuition. By using a perfect cipher, an adversary analysing a 

ciphertext c cannot gain any additional information on the 
corresponding message m 

  Shannon (1949) formalized this intuition 
  Let M be a stochastic variable taking values from the 

message space M 
  Let C be a stochastic variable taking values from the 

ciphertext space C 
  Definition. A cipher is perfect if for all m ∈ Μ and for all c ∈ 

C, Pr(M = m | C = c) = Pr(M = m) 
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Cifrario perfetto 
  Theorem. In a perfect cipher, the number of keys is not smaller 

than the number of clear-texts 
  Proof (by contradiction). Let Nm be the number of clear-texts, 

Nc be the number of ciphertexts and Nk the number of keys 
1. Nm ≤ Nc or otherwise the cipher is not invertible 
2.  Let us assume that Nk < Nm. Thus Nk < Nc 

3.  Let m s.t. Pr(M = m) ≠ 0 . From (2) it follows that c′ ∈ C exists 
s.t. c′ is not image of m. Therefore 
  Pr(M = m | C = c′) = 0 ≠ Pr(M = m) ≠ 0 which contradicts the 
assumption of perfect cipher 
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Unconditional security 
  Unconditional security (perfect secrecy) 

•  An adversary is assumed to have unlimited computational 
resources 

•  The uncertainty in the plaintext after observing the ciphertext 
must be equal to the a priori uncertainty about the plaintext 

•  Observation of the ciphertext provides no information 
whatsoever to an adversary 

  A necessary condition for a symmetric-key encryption scheme 
to be unconditionally secure is that the key bits are chosen 
randomly and independently and the key is at least as long as 
the message 
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One-time Pad (Vernam, 1917) 

  Let m be a t-bit message  
 Let k be a sequence of t randomly chosen bits 

  Encryption and decryption functions 
 Encryption:  ci = mi ⊕ ki, 0≤ i ≤ t 
 Decryption:  mi = ci ⊕ ki, 0≤ i ≤ t 

  An alternative view of the encryption function 
 

  Esempio 
•  m = 01010101, k = 01001110, c = 00011011 (si noti che m è 

periodico ma c no) 

( )
( )
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0
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m k
E m
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One-Time Pad è un cifrario perfetto 

THEOREM. One-Time Pad is a perfect cipher if 
1.  For each message a new key is chosen in perfect 

random way 
2.  All messages have bit-size t 
3.  Every sequence of t bits may be a possible message 

Proof. Omitted 
 
THEOREM. One-Time Pad utilises the smallest number of 
keys 
Proof. Omitted 



One-Time Pad 

  One-time padding is unconditionally secure against 
ciphertext-only attack 
  Any t-bit plaintext message m* can be recovered from a t-bit 

ciphertext c by using a proper key k* = m*⊕c  
  OTP is vulnerable to a known-plaintext attack  

•  key k can be easily obtained from m and c: ki = mi ⊕ ci 
  The key must be used only once.  

  Let us suppose that a key k is used twice, c = m ⊕ k and c´= m´ ⊕ k.  
⇒ c ⊕ c´ = m ⊕ m´. 

  This provides important information pieces to a cryptanalyst who has 
both c and c´.  
  Ex.: a sequence of zeros in c ⊕ c´ corresponds to equal sequences in m and m´ 
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Security of one-time pad 

  OTP requires to generate a key of many random bits 
  This problem is not trivial! 
  Key distribution and key management are complicated 
  Practical approach 

  For this reason, in practice, stream ciphers are used where the 
key stream is pseudo randomly generated from a smaller secret 
key. These ciphers are not unconditionally secure but, hopefully, 
practically secure 

  OTP is vulnerable to integrity attacks 
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One-time pad 
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  c[i] = m[i] + k[i] mod 26 

  m = “SUPPORT JAMES BOND” 
m  = S U P P O R T J A M E S B O N D
k  = W C L N B T D E F J A Z G U I R
c  = O W A C P K W N F V E R H I V U

c  = O W A C P K W N F V E R H I V U
k'  = M W L J V T S E F J A Z G U I R
m  = C A P T U R E J A M E S B O N D



OTP does not protect integrity 
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m  = D A R E C E N T O E U R O A B O B
k  = W C L N B T D E F J A Z G U I R X
c  = Z C C R D X Q X T N U Q U U J F Y

ZCCRD... ZCCRN... 

c' = Z C C R N B O P J N U Q U U J F Y
k  = W C L N B T D E F J A Z G U I R X
m  = D A R E M I L L E E U R O A B O B



BLOCK CIPHERS 
Symmetric encryption 
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Symmetric ciphers 

  Block ciphers are encryption schemes which break 
up the plaintext in blocks of fixed lenght t bits and 
encrypt one block at time 

  Stream ciphers are simple block ciphers in which t = 
1 and the encryption function can change for each bit 
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Block cipher 

P E C 

K 

|P| = |C| = n bits (block lenght) 

|K| = k bits (key lenght) 

K ∈ Κ ⊆ Vk  

P ∈ Π ⊆ Vn 

C ∈ Χ ⊆ Vn 

Vi set of i-bits vectors 

random 

C D P 

K 

For any K,  

•  E(K, P) must be an invertible 
mapping from Vn to Vn and  

•  D(K, P) is the inverse function 

•  E(K, P) will be often denoted by 
EK(P) 
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True random cipher 

For any key K, EK defines a particular substitution (permutation) 

  A true random cipher is a perfect 
cipher 

  All the possible substitutions are 2n! 

  Therefore  the key lenght  is  
k = lg(2n!) ≈ (n - 1.44) 2n  

  key lenght is 2n times the 
block lenght 

  A true random cipher is impractical 

In practice, the encryption function corresponding to a randomly chosen 
key should appear a randomly chosen invertible function 

N = 2n 



Computational (practical) security 
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  A cipher is computationally (practically) secure if the 
perceived level of computation required to defeat it, using 
the best attack known, exceeds, by a comfortable margin, 
the computation resources of the hypothesized 
adversary 

  The adversary is assumed to have a limited 
computation power 



Standard assumptions 

  Objective of the adversary 

   To recover the plaintext from the ciphertext (partial 
break) or even the key (total break) 

  Standard assumptions.  
  An adversary 

1.  has access to all data transmitted over the ciphertext 
channel; 

2.  knows all details of the encryption function except the 
secret key (Kerckhoff’s assumption)  
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Classification of attacks 

  Attacks are classified according to what information an 
adversary has access to 
  ciphertext-only attack 
  known-plaintext attack 
  chosen-plaintext attack 

  A cipher secure against chosen-plaintext attacks is also 
secure against ciphertext-only and known-plaintext attack 

  It is customary to use ciphers resistant to a chosen-plaintext 
attack even when mounting that attack is not practically 
feasible  

stronger 



Attack complexity 

  Attack complexity is the dominant of: 

 data complexity — expected number of input 
data units required 
  Ex.: exhaustive data analysis is O(2n)  

 storage complexity — expected number of 
storage units required 

 processing complexity — expected number 
of operations required to processing input data 
and/or fill storage with data 
  Ex.: exhaustive key search is O(2k) 
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Attack complexity 

  A block cipher is computationally secure 
if  

  n is sufficiently large to preclude exhaustive 
data analysis, and 

  k is sufficiently large to preclude exhaustive 
key search, and 

  no known attack has data and processing 
complexity significantly less than, respectively, 
2n and 2k 
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Exhaustive key search 

Key size 
(bit) 1 Year 1 Month 1 Week 1 Day 

56 2,300 28,000 120,000 830,000 
64 590,000 7,100,000 3.1×107 2.1×108 

128 1,1×1025 1,3×1026 5,6×1026 3,9×1027 

  Number of processors necessary to break a key 

  Every processor performs 106 encryption/second 
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Exhaustive key search 

1 Year 1 Month 1 Week 1 Day 

56 bit 
$2000 $24,000 $100,000 $730,000 

64 bit 
$510,000 $6.2M $27M $190M 

128 bit 
$9.4×1024 $1.2×1026 $4.9×1026 3.3×1027 

  Cost of a year-2005 hardware cracker 
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Exhaustive key search 
  Exhaustive key search is a known-plaintext attack 

  Exhaustive key search may be a ciphertext-only attack if the 
plaintext has known redundancy 

  Exhaustive key search has widespread applicability since 
cipher operations (including decryption) are generally 
designed to be computationally efficient 

  Given                     pairs of plaintext-ciphertext, a key can 
be recovered by exhaustive key search in an expected time 
O(2k-1)  
  Exhaustive key search in Des requires 255 decryptions and one 

plaintext-ciphertext pair 

( ) + 4k n



Exhaustive data analysis 

  A dictionary attack requires to assemble plaintext-
ciphertext pairs for a fixed key 

  A dictionary attack is a known-plaintext attack 
  A complete dictionary requires at most 2n pairs 
  Each pairs requires 2n bits 
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Cryptoanalysis: an historical example 

Cleartext
alphabet A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Key J U L I S C A E R T V W X Y Z B D F G H K M N O P Q

  The key is a permutation of the alphabet 
  Encryption algorithm: every cleartext character having position p in the 

alphabet is substituted by the character having the same position p in the key  
  Decryption algorithm: every ciphertext character having position p in the key 

is substituted by the character having the same position p in the cleartext 
  Number of keys = 26! – 1 ≅ 4 ×1026 (number of seconds since universe 

birth) 

Monoalphabetic substitution 
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Cryptoanalysis: an historical example 

P = “TWO HOUSEHOLDS, BOTH ALIKE IN DIGNITY, 
 IN FAIR VERONA, WHERE WE LAY OUR SCENE” 

(“Romeo and Juliet”, Shakespeare) 

 

P′ = “TWOHO USEHO LDSBO THALI KEIND IGNIT 
 YINFA IRVER ONAWH EREWE LAYOU RSCEN E” 

 

C = “HNZEZ KGSEZ WIGUZ HEJWR VSRYI RAYRH  
 PRYCJ RFMSF ZYJNE SFSNS WJPZK FGLSY S” 
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Cryptoanalysis: an historical example 

  The monoalphabetic-substitution cipher maintains the 
redundancy that is present in the cleartext 

  It can be “easily” cryptoanalized with a ciphertext-only 
attack based on language statistics 

Frequency of single 
characters in English 
text 
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Linear/differential cryptoanalysis 

  Linear cryptonalysis  
•  è una tecnica di crittoanalisi per cifrari a blocchi ed a 

caratteri 
•  Attribuita a Mitsuru Matsui (1992) 

  Differential cryptoanalysis  
•  è una tecnica di crittoanalisi principalmente concepita per 

cifrari a blocchi ma che può essere applicata anche ai cifrari 
a caratteri 

•  Attribuita a to Eli Biham and Adi Shamir verso la fine degli 
anni `80 



Symmetric encryption 37 

Security of DES 

a t ta c k  m e th o d  d a ta  c o m p le x it y  s to ra g e  
c o m p le x it y  

p ro c e s s in g   
c o m p le x it y  k n o w n  c h o s e n  

e x h a u s tiv e  
p re c o m p u ta t io n  —  1  2 5 6  1 *  

e x h a u s tiv e  s e a rc h  1  —  n e g lig ib le  2 5 5  

lin e a r  
c ry p ta n a ly s is  

2 4 3  (8 5 % ) —  fo r te x ts  2 4 3  

2 3 8  (1 0 % ) —  fo r te x ts  2 5 0  

d if fe r e n t ia l 
c ry p ta n a ly s is  

—  2 4 7  fo r te x ts  2 4 7  

2 5 5  —  fo r te x ts  2 5 5  

 

*  T a b l e  l o o k u p  
% : p ro b a b il ity  o f  s u cc e s s  

  Linear cryptanalysis is a known-plaintext attack 

  Differential cryptanalysis is primarily a chosen-
plaintext attack 
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Cryptoanalysis of DES 

 Linear cryptonalysis 
• A known-plaintext attack has O(243) data complexity and O(243) 

computation complexity. 
•  With a chosen-plaintext attack, data complexity can be 

reduced by a factor of 4. 
 Differential cryptoanalysis  

• Known-plaintext attack has O(255) data complexity and O(255) 
computation complexity 

• Chosen-plaintext attack has O(247) data complexity and O(247) 
computation complexity 

• DES is "surprisingly" resilient to DC.  
 LC is the "best" analytical attack but is considered unpractical 



Encryption modes 

 Electronic CodeBook 

 Cipher Block Chaining 

39 Symmetric encryption 
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Encryption modes 

  A block cipher encrypts plaintext in fixed-size  
n-bit blocks 

  When the plaintext exceeds n bit, there exist several 
methods to use a block 

 Electronic codebook (ECB)  

 Cipher-block Chaining (CBC) 

 Cipher-feedback (CFB) 

 Output feedback (OFB) 
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Encryption modes: ECB 

  Electronic Codebook (ECB) 

plaintext 

ciphertext 

plaintext blocks are 
encrypted separately 

( )
( )

1 ,

1 ,
i k i

i k i

i t c E p

i t p D c

∀ ≤ ≤ ←

∀ ≤ ≤ ←

E 

K 

pi ci 

D 

K 

ci pi 
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Encryption modes: ECB 
Properties 

  Identical plaintext results in identical ciphertext 
 ECB doesn’t hide data patterns 

  No chaining dependencies: blocks are enciphered 
independently of other blocks 
 ECB allows block reordering and substitution 

 Error propagation: one or more bit errors in a single 
ciphertext block affects decipherment of that block 
only 
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Encryption modes: ECB 
AN EXAMPLE OF BLOCK REPLAY 

  A bank transaction transfers a client U’s amount of money D 
from bank B1 to bank B2 

•  Bank B1 debits D to U  
•  Bank B1 sends the “credit D to U” message to bank B2 
•  Upon receiving the message, Bank B2 credits D to U 

  Credit message format 
•  Src bank: M (12 byte) 
•  Rcv banck: R (12 byte) 
•  Client: C (48 byte) 
•  Bank account: N (16 byte)  
•  Amount of money: D (8 byte) 

  Cifrario (n = 64 bit; modalità ECB) 
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Encryption modes: ECB 
AN EXAMPLE OF BLOCK REPLAY 
  Mr. Lou Cipher is a client of the banks and wants to 

make a fraud. 
  Lou Cipher is an active adversary and wants to 

replay a Bank B1’s message "credit 100$ to Lou 
Cipher" many times 

  Attack strategy 
•  The adversary activates multiple transfers of 100$ so 

that multiple messages  "credit 100$ to Lou Cipher" 
are sent from B1 to B2 

•  The adversary identifies at least one of these 
messages 

•  The adversary replies the message several times 
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Encryption modes: ECB 

1.  The adversary performs k equal transfers 
•  credit 100$ to Lou Cipher ⇒ c1 

•  credit 100$ to Lou Cipher ⇒ c2 

•  ... 
•  credit 100$ to Lou Cipher ⇒ ck 

2.  The adversary searches “his own” cryptograms over the network  
3.  The adversary replies one of these cryptograms 

Bank 1 Bank 2 

AN EXAMPLE OF BLOCK REPLAY 

ci 

COMMENT. k is large 
enough to allow the 
adversary to identify the 
cryptograms 
corresponding to its 
transfers 

c1 = c2 = … = 
ck 
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Encryption modes: ECB 

  An 8-byte timestamp field T  is added to the message to prevent replay attacks 

AN EXAMPLE OF BLOCK REPLAY 

However, the adversary can 
1.  identify “his own” cryptograms as before by inspecting blocks 2–13;  
2.  intercept any “fresh” cryptogram;  
3.  substitute block 1 of “his own” cryptogram with block 1 of the “fresh” 

cryptogram 

1 2 3 4 5 6 7 8 9 10 11 12 13 

T M R C N D 

block 
no. 
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Encryption modes: Cipher Block Chaining 
 CBC segue il principio di diffusione di Shannon introducendo 

una dipendenza di posizione tra il blocco in elaborazione e 
quelli precedenti 

 CBC è un cifrario a blocchi in cui blocchi identici del messaggio 
vengono cifrati in modo diverso eliminando ogni periodicità 

ci depends on pi and all 
preceding plaintext 
blocks  

plaintext 

ciphertext 
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CBC 

p1 ⊕
 EK c1 

p2 ⊕
 EK c2 

pn ⊕
 EK cn 

Μ 

IV 

( )
( )

0 1

0 1

. 1 ,

. 1 ,
i k i i

i i k i

c IV i t c E p c

c IV i t p c D c
−

−

← ∀ ≤ ≤ ← ⊕

← ∀ ≤ ≤ ← ⊕

⊕
DK p1 

⊕
DK p2 

⊕
DK pn 

Μ 

IV 
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CBC: properties 

  Identical ciphertext result from the same plaintext under the 
same key and IV 

  IV can be sent in the clear; its integrity must be guaranteed 

  Chaining dependencies: ci depends on pi and all preceding 
plaintext blocks 
 Ciphertext block reordering affects decryption 

  Error propagation: bit errors in ci affect decryption of ci and ci
+1 

  Error recovery: CBC is self-synchronizing or ciphertext 
autokey 

  Framing errors: CBC does not tolerate “lost” bits 



Multiple encryption 

 3DES (EDE, EEE) 
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Multiple encryption 

  If a cipher is subject to exhaustive key search, encipherment of a 
message more than once may increase security 

  Multiple encryption may be extended to messages exceeding one 
block by using standard modes of operation 

  Cascade cipher is the concatenation of L ≥ 2 ciphers, each with 
independent keys 

  Multiple encryption is similar to a cascade cipher but the 
ciphers are identical (either E or D) and the keys need not be 
independent 
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Double encryption 

E() E() m c 

k1 k2 

  Double encryption is subject to a known-plaintext attack called “meet-
in-the-middle” attack which requires  
2k operations and  
2k storage units 
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Triple encryption 

  Financial applications 
  Standard (ANSI X9.17 and ISO 8732) 
  A chosen-plaintext attack requires 2k operations, 2k data inputs and 2k 

storage units 
  A known-plaintext attack requires p data inputs, 2k+n/p operations, and 

O(p) storage units 
  Backward compatibility with E when K = K' 

E D E m c 

K K´ K EDE 
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Triple encryption 

EEE 

E E E m c 

K K´ K'' 

  A known-plaintext attack similar to meet-in-the-middle, which 
requires 22k operations and 2k units of storage 

  With DES, k = 56 (DES), the cipher is practically secure 



Cryptographic Libraries 
and APIs 

 Java Cryptography  

 OpenSSL (ciphers) 
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I cifrari a carattere 

56 Symmetric encryption 
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Stream ciphers 

  In stream ciphers  
•  a plaintext block is as small as one bit and 
•  the encryption function may vary as plaintext is processed (stream 

ciphers have memory) 

  Stream ciphers are faster than block ciphers in hardware, and have less 
complex hardware circuitry 

  Stream ciphers are more appropriate or mandatory 
•  when buffering is limited 
•  when characters must be processed as they are received 
•  when transmission errors are highly probable since they have limited or 

no error propagation 
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Synchronous stream ciphers 

Keystream 
Generator k zi  ⊕
 ci 

mi 

Keystream 
Generator k zi  ⊕
 mi 

ci 

Properties 

•  Sender and receiver must be synchronized.  
If a bit is inserted or deleted, decryption fails.  

•  No error propagation 

•  Modifications to cipher text bits may go undetected 

Encryption Decryption 
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Synchronous stream ciphers 

Properties 
•  Sender and receiver must be synchronized.  

•  If a bit is inserted or deleted, decryption fails.  

•  No error propagation. 
•  A wrong bit in the ciphertext does not affect the others. 

•  Some actives attacks may go undetected 
•  An adversary that insert/removes one bit can be detected 
•  An adversary that changes one bit may be not detected 
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Self-synchronizing stream ciphers 

Keystream 
Generator k zi  ⊕
 ci 

mi 

Keystream 
Generator k zi  ⊕
 mi 

ci 

t positions 

Encryption Decryption 
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Self-synchronizing stream ciphers 

Properties 
•  Self-synchronization. 

•  Insertion/removal of one bit in cipher-text causes the loss of t-bits 
•  Limited error propagation 

•  The change of a bit in cipher-text changes t-bits 
•  Active attacks 

•  Self-syncronization property makes insertion/removal of a bit more 
difficult to detect that synchronous ciphers 

•  Error propagation property simplifies detection of a bit change w.r.t. 
synchronous ciphers 

•  Diffusion of plaintext statistics 
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Key stream generator 

  The key stream must have the following properties:   
•  large period 
•  unpredictable 
•  good statistics 

  There are only necessary conditions for a KSG to be 
considered cryptographically secure 

  KSGs are computationally secure after public scrutiny  
(no mathematical proof) 
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Stream ciphers 
  For hardware implementation 

•  LFSR-based stream ciphers 

  For software implementation 
•  SEAL 

•  New algorithm (1993) for software implementation on 32-bit 
processors. It has received not yet much scrutiny 

•  RC4  
•  commercial products 
•  variable key 
•  proprietary 

•  Output Feedback (OFB), Cipher Feedback (CFB) 
(modes of block ciphers) 
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WEP (802.11) 

•  An example of insecure system made of 
secure components 


