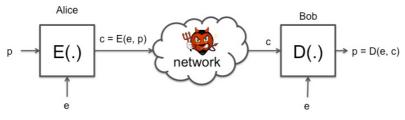
Data Encryption Standard

Symmetric Cryptography

Block cipher

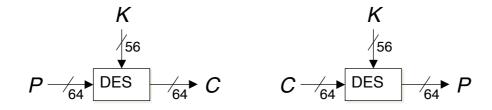
• Block ciphers break up the plaintext in blocks of fixed length *n* bits and encrypt one block at time



- $E: \{0,1\}^n \longrightarrow \{0,1\}^n$ $D: \{0,1\}^n \longrightarrow \{0,1\}^n$
- *E* is a permutation (one-to-one, invertible)

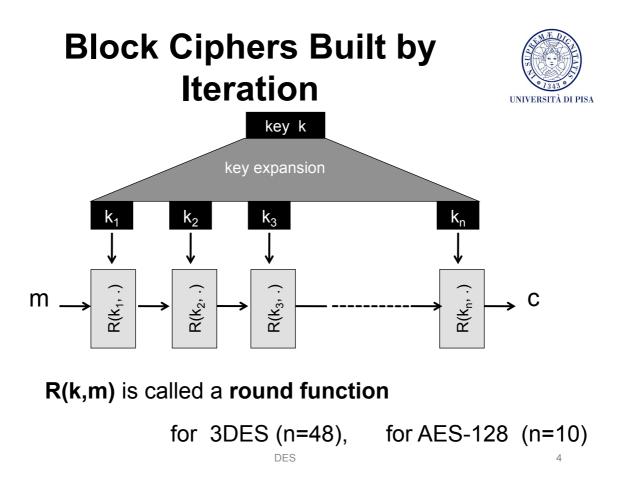
Data Encryption Standard (DES)

3



- The input key K is actually specified as a 64-bit key, 8 bits of which (bits 8; 16, ..., 64) may be used as parity bits.
- The 2⁵⁶ keys implement (at most) 2⁵⁶ of the 2⁶⁴! possible permutations on 64-bit blocks.

DES



Data Encryption Standard

- On May 15, 1973, National Bureau of Standards published a solicitation for cryptosystems in the Federal Register
- DES was published in the Federal Register of March 17, 1975
- DES was developed by IBM as a modification of LUCIFER
- DES was considered a standard for "unclassified" applications on January 15, 1977 after much public discussion
- DES has been reviewed every 5 years
- The most recent review was January 1994
- It is not a standard since 1998.

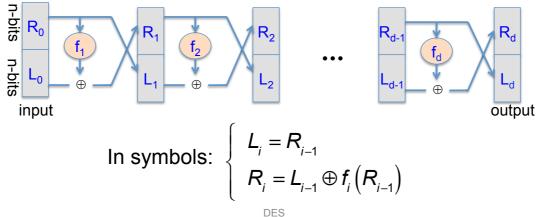
DES

Basic idea: Feistel Network

5

Given functions $f_1, \ldots, f_d: \{0,1\}^n \longrightarrow \{0,1\}^n$

Goal: build invertible function $F: \{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$

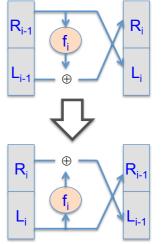


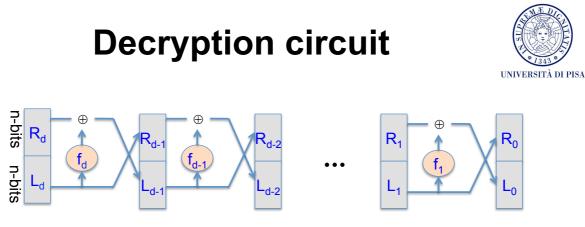
Feistel net is invertible

Theorem: for all $f_1, ..., f_d$: $\{0,1\}^n \rightarrow \{0,1\}^n$ Feistel network F: $\{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$ is invertible

Proof: construct inverse

In symbols: $\begin{cases} R_{i-1} = L_i \\ L_{i-1} = R_i \oplus f_i(L_i) \end{cases}$





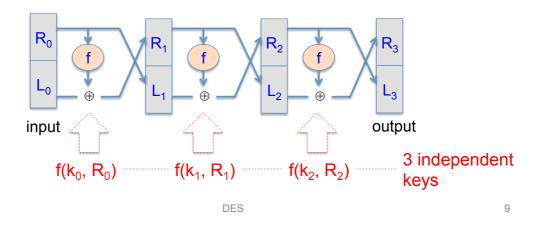
DES

- Inversion is basically the same circuit, with $f_1, \, \ldots, \, f_d$ applied in reverse order
- General method for building invertible functions (block ciphers) from arbitrary functions.
- Used in many block ciphers ... but not AES

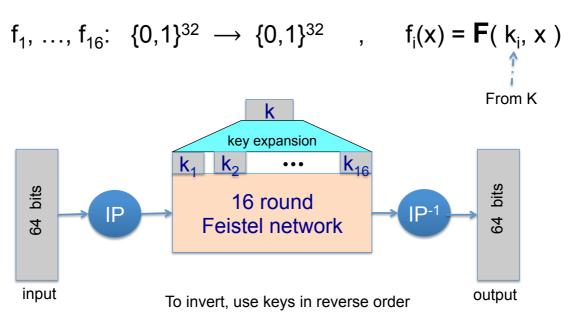
Luby-Rackoff '85

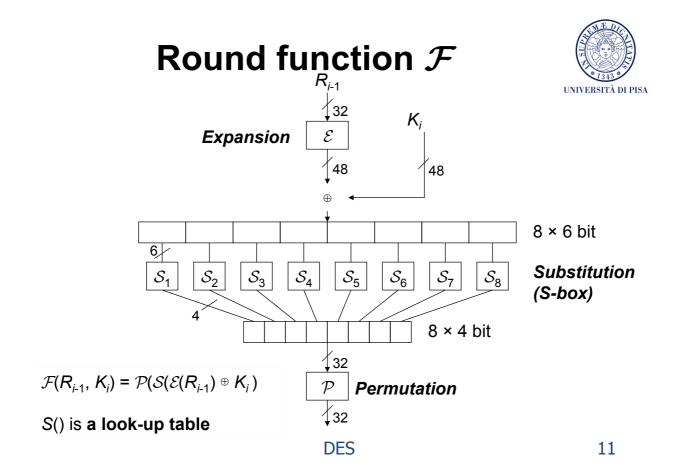
Theorem.

Let f: $K \times \{0,1\}^n \longrightarrow \{0,1\}^n$ be a secure PRF \Rightarrow 3-round Feistel F: $K^3 \times \{0,1\}^{2n} \longrightarrow \{0,1\}^{2n}$ is a secure PRP

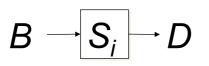


DES: 16 round Feistel net





S-boxes



 $B = b_1 b_2 b_3 b_4 b_5 b_6$ $Row \rightarrow b_1 b_6 \text{ (outer bits)}$ Column $\rightarrow b_2 b_3 b_4 b_5$ (inner bits)

tow								colt	mm n	umbe	e,					
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	10	[11]	12	[13]	[14]	15
S.,																
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
[1]	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
[2] [3]	4	1	14 8	8	13 4	6 9	2	11	15 5	12 11	9	7	3 10	10 0	6	13
9	15	12	8	2	-4	9	1		- 5 S.	11	3	14	10	0	0	15
0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
2	0	14	7	n	10	4	13	1	5	8	12	6	9	3	2	15
[3]	13	8	10	1	3	15	-4	2	11	6	7	12	0	5	14	9
S _m																
[0]	10	0	9	14	6	3	15	5	1	13	12	7	11	- 4	2	8
[1]	13	7	0	9	3	-4	6	10	2	8	5	14	12	11	15	1
[2]	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
[3]	1	10	13	0	6	9	8	- 7	4	15	14	3	11	- 5	2	12
Ś"																
[0] [1]	13	13 8	14	3	0 6	6 15	9	10 3	1 4	2	8	5 12	11	12 10	4	15
2	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
[3]	3	15	0	6	10	1	13	8	9	4	5	14	12	7	2	14
[12]		10	÷		10		1.0		S.	-	2		12		-	14
0	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
1	14	11	2	12	-4	7	13	1	5	0	15	10	3	9	8	6
2	-4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	-14
[3]	11	8	12	7	1	14	2	13	6	15	0	9	10	- 4	5	3
									$S_{\rm m}$							
0	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
[1]	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
[2] [3]	9 4	14	15 2	5 12	2	8	12 15	3 10	11	0	4	10 7	1	13 0	11 8	6 13
9	4	3	4	12	А	2	15	10	 S_	14	1		0	0	a	15
[0]	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
1	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
2	1	4	11	13	12	3	7	14	10	15	6	8	õ	5	9	2
3	6	П	13	8	1	4	10	7	9	5	0	15	14	2	3	12
(c) 1 co																
[0]	13	2	8	-4	6	15	11	1	10	9	3	- 14	- 5	0	12	7
[1]	1	15	13	8	10	3	7	-4	12	5	6	11	0	14	9	2
[2]	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
[3]	2	1	14	7	4	10	8	13	15	12	9	0	3	- 5	6	11

S-boxes

$S_i^{} \colon \{0,1\}^6 \longrightarrow \{0,1\}^4$

S ₅		Middle 4 bits of input															
		000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	00	010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
	01	1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
Outer bits	10	100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

 $S_5(011011) \to 1001$

DES

S-box: a bad choice

13

Suppose:

 $S_{i}(x_{1}, x_{2}, ..., x_{6}) = (x_{2} \oplus x_{3}, x_{1} \oplus x_{4} \oplus x_{5}, x_{1} \oplus x_{6}, x_{2} \oplus x_{3} \oplus x_{6})$

or written equivalently: $S_i(\mathbf{x}) = A_i \cdot \mathbf{x} \pmod{2}$

$$\begin{array}{c} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ \end{array} \times \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{array} = \begin{array}{c} x_2 \oplus x_3 \\ x_1 \oplus x_4 \oplus x_5 \\ x_1 \oplus x_6 \\ x_2 \oplus x_3 \oplus x_6 \end{array}$$

We say that **S_i is a linear function**.

S-box: a bad choice

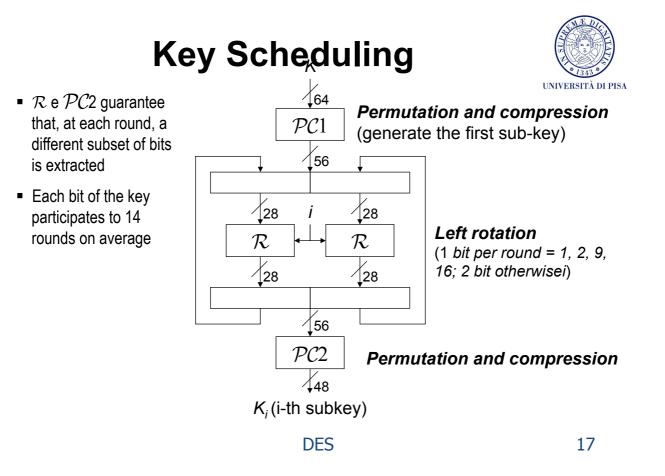
Then entire DES cipher would be linear: ∃ fixed binary matrix B s.t.

$$DES(k,m) = \begin{bmatrix} 64 \\ B \end{bmatrix} \times \begin{bmatrix} m_1 \\ k_2 \\ \vdots \\ k_{16} \end{bmatrix} = \begin{bmatrix} c \pmod{2} \\ (\mod 2) \end{bmatrix}$$

But then: $DES(k,m_1) \oplus DES(k,m_2) \oplus DES(k,m_3) = B \cdot \begin{pmatrix} m_1 \oplus m_2 \oplus m_3 \\ k \end{pmatrix} \oplus B \cdot \begin{pmatrix} m_2 \\ k \end{pmatrix} \oplus B \cdot \begin{pmatrix} m_3 \\ k \end{pmatrix} = B \cdot \begin{pmatrix} m_1 \oplus m_2 \oplus m_3 \\ k \end{pmatrix}$
DES = DES = DES = DES(k,m_3) = DES(k,m_3) = DES =

Choosing S-box and P-box

- Choosing S-boxes and P-box at random would result in an insecure block cipher
 - (key recovery after ≈2²⁴ outputs) [BS'89]
- Several rules used in choice of S and P boxes:
 - No output bit should be close to a linear function of the input bits
 - S-boxes are 4-to-1 maps



- DES can be efficiently implemented either in hardware or in software
 - Arithmetic operations are
 - exclusive-or
 - E, S-boxes, IP, IP-1, key scheduling can be done in constant time by table-lookup (sw) or by hard-wiring them into a circuit
- One very important DES application is in banking transactions
 - DES is used to encrypt PINs and account transactions carried out at ATM
 - DES is also used in government organizations and for inter-bank transactions

Empirical properties of DES

Empirically, DES fulfills these reqs:

- Each CT bits depends on all key bits and PT bits
- There are no evident statistical relationships between CT and PT
- The change of one bit in the PT (CT) causes the change of every bit in the CT (PT) with 0.5 probability

DES

Strength of DES

19

attack method	data complex	ity	storage complexity	processing complexity			
exhaustive precomputation	-	1	2 ⁵⁶	1 (table lookup)			
exhaustive search	1	_	negligible	2 ⁵⁵			
linear	2 ⁴³ (85%)		for texts	2 ⁴³			
cryptanalysis	2 ³⁸ (10%)		for texts	2 ⁵⁰			
differential	_	2 ⁴⁷	for texts	2 ⁴⁷			
cryptanalys	2 ⁵⁵		for texts	2 ⁵⁵			