Other public key cryptosystems

Public-key encryption

Discrete Logarithm

Definition

• Let p be a prime, q a prime divisor of $p-1$ and $g \in [1, p-1]$ has order q

• Let x be the private key selected at random from $[1, q-1]$

• Let y be the corresponding public key $y = g^x \mod p$

• Discrete Logarithm Problem (DLP). Given (p, q, g) and y, determine x
ElGamal encryption scheme

• Encryption (2 exp)
 – select \(k \) randomly
 – \(c_1 = g^k \mod p \), \(c_2 = m \times y^k \mod p \)
 – send \((c_1, c_2)\) to recipient

• Decryption (1 exp)
 – \(c_1^x = g^{kx} \mod p = y^k \mod p \)
 – \(m = c_2 \times y^{-k} \mod p \)

• Security
 – An adversary needs \(y^k \mod p \). The task of calculating \(y^k \mod p \) from \((g, p, q)\) and \(y \) is equivalent to DHP and thus based on DLP in \(\mathbb{Z}_p \)

ElGamal in practice

• Prime \(p \) and generator \(g \) can be common system-wide

• Prime \(p \) size
 – 512-bit: marginal
 – 768-bit: recommended
 – 1024-bit or larger: long-term

• Efficiency
 – Encryption requires two modular exponentiations
 – Message expansion by a factor of 2

• Security
 – Different random integers \(k \) must be used for different messages
Elliptic Curve Cryptography

- Let p and $\in \mathbb{F}_p$
- Let E be an elliptic curve defined by $y^2 = x^3 + ax + b \pmod{p}$ where $a, b \in \mathbb{F}_p$ and $4a^3 + 27b^2 = 0$
- Example. $E: y^2 = x^3 + 2x + 4 \pmod{p}$
- The set of points $E(\mathbb{F}_p)$ with point at infinity ∞ forms an additive Abelian group

Elliptic curves: geometrical approach
Elliptic Cryptography (ECC)

- **Algebraic Approach**
 - Elliptic curves defined on finite field define an Abelian finite field

- **Elliptic curve discrete logarithm problem**
 - Given points G and Q such that $Q = kG$, find the integer k
 - No sub-exponential algorithm to solve it is known

- **ECC keys are smaller than RSA ones**

Elliptic Curve Cryptography

- Let P have order n then the cyclic subgroup generated by P is $G = \langle P, 2P, \ldots, (n - 1)P \rangle$

- Parameters P and n are the **public parameters**

- **Private key** d is selected at random in $[1, n - 1]$

- **Public key** $Q = dP$
Ellyptic Curve Cryptography

• **Encryption**
 – A message \(m \) is represented as a point \(M \)
 – \(C_1 = kP; \ C_2 = M + kQ \)
 – send \((C_1; \ C_2) \) to recipient

• **Decryption**
 – \(dC_1 = d(kP) = kQ \)
 – \(M = C_2 - dC_1 \)

• **Security**
 – The task of computing \(kQ \) from the domain parameters, \(Q \), and \(C_1 = kP \), is the **ECDHP**

\[
\begin{array}{|c|c|c|c|c|}
\hline
& 80 & 112 & 128 & 192 & 256 \\
\hline
\text{EC parameter n} & 160 & 224 & 256 & 384 & 512 \\
\text{RSA modulus n} & 1024 & 2048 & 3072 & 8192 & 15360 \\
\text{DL modulus p} & & & & & \\
\hline
\end{array}
\]

Comparison among crypto-systems

• Private key operations are more efficient in EC than in DL or RSA
• Public key operations are more efficient in RSA than EC or DL if small exponent \(e \) is selected for RSA
Comparison among crypto-systems

<table>
<thead>
<tr>
<th>Security level (bits)</th>
<th>DL parameter q (EC parameter n)</th>
<th>RSA modulus n (DL modulus p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 (SKIPJACK)</td>
<td>160</td>
<td>1024</td>
</tr>
<tr>
<td>112 (3DES)</td>
<td>224</td>
<td>2048</td>
</tr>
<tr>
<td>128 (AES small)</td>
<td>256</td>
<td>3072</td>
</tr>
<tr>
<td>192 (AES medium)</td>
<td>384</td>
<td>8192</td>
</tr>
<tr>
<td>256 (AES large)</td>
<td>512</td>
<td>15360</td>
</tr>
</tbody>
</table>

- Private key operations are more efficient in EC than in DL or RSA.
- Public key operations are more efficient in RSA than EC or DL if small exponent e is selected for RSA.

Other PK cryptosystems