Digital signatures

• Provide *integrity* in the public-key setting
• Analogous to message authentication codes (MACs) but some key differences…
Security

- **DEF (informal).** Even after observing signatures on multiple messages, an attacker should be unable to *forge* a valid signature on a *new* message.
Prototypical application

Patch distribution (Microsoft, Adobe)

\((pk, sk) \)

\(\sigma = S(sk, patch) \)

Comparison to MACs

Patch distribution (Microsoft, Adobe)

\(t' = MAC(k, patch') \)

\(t = MAC(k, patch) \)
Comparison to MACs

• Single shared key k
 – A client may forge the tag
 – Unfeasible if clients are not trusted

• Point-to-point key k_i
 – Computing and network overhead
 – Prohibitive key management overhead
 – Unmanageable!
Comparison to MACs

• Public verifiability
 – DS: anyone can verify the signature
 – MAC: Only a holder of the key can verify a MAC tag

• Transferability
 – DS can forward a signature to someone else
 – MAC cannot

• Non-repudiability

Non-repudiation

• Signer cannot (easily) deny issuing a signature
 – Crucial for legal application
 – Judge can verify signature using a copy of pK

• MACs cannot provide this functionality
 – Without access to the key, no way to verify a tag
 – Even if receiver leaks key to judge, how can the judge verify the key is correct?
 – Even if the key is correct, receiver could have generated the tag!
Informal properties

- **DEF.** A digital signature is a number dependent on some secret known only to the signer and, additionally, on the content of the message being signed

- **Property.** A digital signature must be verifiable
 - If a dispute arises an unbiased third party must be able to solve the dispute equitably, without requiring access to the signer's secret

Digital signature scheme

- A **signature scheme** is defined by three PPT algorithms \((G, S, V)\):
 - **Key generation algorithm** \(G\) takes as input \(1^n\) and outputs \((pk, sk)\)
 - **Signature generation algorithm** \(S\) takes as input a private key \(sk\) and a message \(m\) and outputs a signature \(\sigma = S(sk, M)\)
 - **Signature verification algorithm** \(V\) takes as input a public key \(pk\), a signature \(\sigma\) and (optionally) a message \(m\) and outputs True or False
 - **Consistency.** For all \(m\) and \((pk, sk)\), \(V(pk, [m], S(sk, m)) = TRUE\)
Security model

• Threat model
 – Adaptive chosen-message attack
 • Assume the attacker can induce the sender to sign messages of the attacker’s choice
 – The attacker gets the public key

• Security goal
 – Existential unforgeability
 • Attacker should be unable to forge valid signature on any message not signed by the sender
Plain RSA

- **Key generation**
 - \((e, n)\) public key; \((d, n)\) private key
 - *Same algorithm ad PKE*

- **Signing operation**
 - \(\sigma = m^d \mod n\)

- **Verification operation**
 - \(m = \sigma^e \mod n\)

Properties

- **Computational aspects**
 - *The same considerations as PKE*
 - The re-blocking problem

- **Security**
 - Algorithmic attacks
 - Existential forgery
 - Malleability
The re-blocking problem

- The problem (theoretical)
 - If Alice wants to send a secret and signed message to Bob then it must be $n_A < n_B$

- Possible solutions
 - **Reordering**: the operation with the smaller modulus is performed first
 - CONS: The preferred order is always to sign first and encrypt later
 - **Two moduli for every entity**
 - Every entity has two moduli
 - Moduli for signing (e.g., t-bits) is always smaller of all possible moduli for encryption (e.g., $t+1$-bits)

Algorithmic attacks

- The verifier must have the correct public key
- Attempt to break RSA by computing d
 - The most general attack tries to factor modulus n
 - The modulus must be sufficient large (1024 bits or more are recommended)
Existential forgery

- Generate a valid signature for a random message x
 - Given Alice’s public key (n, e)
 - Choose a signature σ
 - Compute $x = \sigma^e \mod n$
 - Output x, σ
 - Message m is random and may have no application meaning. However, this property is undesirable.

Malleability

- **Goal.** Combine two signatures to obtain a third (existential forgery)
- **Attack**
 - Given $\sigma_1 = m_1^d \mod n$
 - Given $\sigma_2 = m_2^d \mod n$
 - Output $\sigma_3 = (\sigma_1 \cdot \sigma_2) \mod n$ that is a valid signature of $m_3 = (m_1 \cdot m_2) \mod n$
 - PROOF.
 - $\sigma_3^e = (\sigma_1 \cdot \sigma_2)^e = \sigma_1^e \cdot \sigma_2^e = m_1 \cdot m_2 \mod n$
RSA Padding

• Because of existential forgery and malleability, plain RSA is never used
• Padding scheme allows only certain message formats
 – It must be difficult to choose a signature whose corresponding message has that format
• Padding schemes
 – Probabilistic Signature Scheme (PSS) in PKCS#1
 – Full Domain Hash (RSA-FDH)
 – ISO/IEC 9776

Probabilistic Signature Standard (PSS)

• The message is encoded before signing
 • $M =$ message
 • $EM =$ encoded message
 • $Salt =$ random value
 • $MGF:$ mask generation function
 • $bc, padding_1, padding_2:$ fixed values
 • $s = EM^d \mod n$

• PROS
 – Verifiable secure
 – Salting makes EM probabilistic
THE ELGAMAL SIGNATURE SCHEME

Elgamal in a nutshell

- Invented in 1985
- Based on difficulty of discrete logarithm
- Digital signature operations are different from the cipher operations
Key generation

- Choose a large prime p
- Choose a primitive element α if \mathbb{Z}_p^*
- Choose a random number d in $\{2, 3, \ldots, p - 2\}$
- Compute $\beta = \alpha^d \mod p$
- Let (p, α, β) be the public key and d the private key

Signature generation

- Digital signature of message x
- Choose an ephemeral key ke in $\{0, 1, 2, p - 2\}$ such that $\gcd(ke, p - 1) = 1$
- Compute the signature parameters
 - $r = \alpha^{ke} \mod p$
 - $s = (x - d \cdot r) \cdot ke^{-1} \mod p - 1$
- (r, s) is the digital signature
- Send $x, (r, s)$
Signature verification

- Upon verification of \(x, (r, s) \)
- Compute \(t = \beta^r \cdot r^s \)
- If \(t = \alpha^x \mod p \) ➔ valid signature; otherwise invalid signature

Proof

1. Let \(\beta^r \cdot r^s = (\alpha^d)^r (\alpha^k e)^s = \alpha^{d \cdot r + k e \cdot s} \mod p \)
2. If \(\beta^r \cdot r^s = \alpha^x \mod p \) then
 \(\alpha^x = \alpha^{d \cdot r + k e \cdot s} \mod p \)
3. According to Fermat’s little theorem Eq.2 holds if \(x = d \cdot r + k e \cdot s \mod p - 1 \)
4. From which the construction of parameter \(s = (x - d \cdot r)k e^{-1} \mod p - 1 \)
Computational aspects

- **Key generation**
 - Generation of a large prime (1024 bits)
 - True random generator for the private key
 - Exponentiation by square-and-multiply

- **Signature generation**
 - $|s| = |r| = |p|$ thus $|x, (r, s)| = 3 \cdot |x|$ (msg expansion)
 - One exponentiation by square-and-multiply
 - One inverse $ke^{-1} \mod p$ by extended Euler algorithm (pre-computation)

- **Signature verification**
 - Two exponentiations by square-and-multiply
 - One multiplication

Security aspects

- The verifier must have the correct public key
- The DLP must be intractable
- Ephemeral key cannot be reused
 - If ke is reused the adversary can compute the private key d and impersonate the signer
- Existential forgery for a random message x unless it is hashed
The Digital Signature Algorithm (DSA)

- The Elgamal scheme is rarely used in practice
- DSA is a more popular variant
 - It's a federal US government standard for digital signatures (DSS)
 - It was proposed by NIST
- Advantages w.r.t. Elgamal
 - Signature is only 320 bits
 - Some attacks against Elgamal are not applicable to DSA

Elliptic Curve DSA (ECDSA)

- ECDSA was standardized in US by ANSI in 1998
- **Pros**
 - ECC allow 160-256-bit lengths which provide security equivalent to 1024-3072-bit RSA/DL
- **Cons**
 - Finding EC with good cryptographic properties in nontrivial
 - Standardize curves by NIST or Brainpool consortium
HASH FUNCTIONS

Properties

- Hash functions properties
 - Pre-image resistance
 - Second pre-image resistance
 - Collision resistance
- These properties are crucial for digital signatures security
Pre-image resistance

- Digital signature scheme based on (school-book) RSA
 - \((n, d) \) is a Alice’s private key;
 - \((n, e) \) is a Alice’s public key
 - \(\sigma = (h(m))^d \pmod{n} \)

- **THM** - If \(h() \) is not pre-image resistant => *existential forgery*
 - Select \(z < n \)
 - Compute \(y = z^e \pmod{n} \)
 - Find \(m' \) such that \(h(m') = y \)
 - Claims that \(z \) is the digital signature of \(m' \)

2nd preimage resistance

- Let \((G, S, V) \) be a signature scheme

- A trusted third party chooses a message \(x \) that Alice signs producing \(s = S(d_A, h(x)) \)

- If \(h() \) is not 2nd-preimage resistant, an adversary (e.g. Alice herself) can claim that Alice has signed \(x' \) instead of \(x \)
 - Adversary determines a 2nd-preimage \(x' \) of \(x \)
 - Adversary claims that Alice has signed \(x' \) instead of \(x \)
Collision resistance

• Let \((G, S, V)\) be a signature scheme

• If \(h()\) is not collision resistant, Alice (an untrusted party) can
 – choose \(x\) and \(x'\) so that \(h(x) = h(x')\)
 – compute \(s = S(d_A, h(x))\)
 – Issue \((m, s)\) to Bob
 – later claim that she actually issued \((x', s)\)
Non-repudiation vs authentication

• **DEF.** Non-repudiation prevents a signer from signing a document and subsequently being able to successfully deny having done so.

• **Non-repudiation vs authentication of origin**
 - **Authentication** (based on symmetric cryptography) allows a party to convince itself or a mutually trusted party of the integrity/authenticity of a given message at a given time \(t_0 \)
 - **Non-repudiation** (based on public-key cryptography) allows a party to convince others at any time \(t_1 \geq t_0 \) of the integrity/authenticity of a given message at time \(t_0 \)

Dig sig vs non-repudiation

• Alice’s digital signature for a given message depends on the message and a secret known to Alice only (the private key)

• Bob verifies the digital signature by means of another, different value: the public key
Dig sig vs non-repudiation

- Data origin authentication as provided by a digital signature is valid only while the secrecy of the signer’s private key is maintained.
- A threat that must be addressed is a signer who intentionally discloses his private key, and thereafter claims that a previously valid signature was forged.
- This threat may be addressed by:
 - Prevent direct access to the key
 - Use of a trusted timestamp agent
 - Use of a trusted notary agent

Trusted timestamping service

- Trent certifies that digital signature s exists at time t_0.
- If Bob’s priv-key is compromised at $t_1 > t_0$, then s is valid.
Trusted Notary Service

- TNS generalize the TTS
 - Trent certifies that a certain statement σ on the digital signature s (is true at t_0
 - s exists at t_0
 - s is valid at t_0
 - Trent may certify the existence of a certain document doc
 - $s = S(privK_T, H(doc) \ || \ timestamp)$
 - Document doc remains secret

- Trent is trusted to verify the statement before issuing it
Classification

- **Dig sig with message recovery**
 - does not require the original message as input to the verification algorithm. In this case, the original message is recovered from the signature itself
 - Examples: RSA, Rabin, Nyberg-Rueppel

- **Dig sig with appendix**
 - requires the original message as input to the verification algorithm
 - uses hash functions
 - Examples: ElGamal, DSA, DSS, Schnorr

RSA-based dig sig

- Digital signature with message recovery
 - Redundancy function
 - A suitable redundancy function is necessary in order to avoid existential forgery
 - **IOS/IEC 9796** (1991) defines a mapping that takes a k-bit integer and maps it into a 2k-bits integer

- Digital signature scheme with appendix
 - MD5 (128 bit)
 - **PKCS#1** specifies a redundancy function mapping 128-bit integer to a k-bit integer, where k is the modulus size (k>512, k = 768, 1024)
Dig sig with message recovery (1)

- **Definitions**
 - \(M \) is the message space
 - \(M_S \) is the signing space
 - \(S \) is the signature space

- **Key generation**
 - \(A \) selects a private key \(d_A \) defining a *signing algorithm* \(S_A \) which is a one-to-one mapping \(S_A: M_S \rightarrow S \)
 - \(A \) defines the corresponding public key defining the *verification algorithm* \(V_A \) such that \(V_A \times S_A \) is identity map on \(M_S \).

Dig sig with message recovery (2)

The signing process

- Compute \(m^* = R(m) \), \(R \) is a *redundancy function* (invertible)
- Compute \(s = S_A(m^*) \)
Dig sig with message recovery
(3)

The verification process

- Obtain authentic public key V_A
- Compute $m^* = V(s)$
 - Verify if $m^* \in M_S$ (if not, reject the signature)
- Recover the message $m = R^{-1}(m^*)$

Dig sig with message recovery
(4)

- Properties of S_A and V_A
 - **(efficiency)** S_A should be efficient to compute
 - **(efficiency)** V_A should be efficient to compute
 - **(security)** It should be **computationally infeasible** for an entity other than A to find an $s \in S$ such that $V_A(s) \in M_S$
Dig sig with message recovery (5)

- **The redundancy function**
 - R and R^{-1} are publicly known
 - Selecting an appropriate R is critical to the security of the system

- **A bad redundancy function may lead to existential forgery**
 - Let us suppose that $MR \equiv MS$
 - R and SA are bijections, therefore M and S have the same number of elements
 - Therefore, for all $s \in S$, $VA(s) \in MR$. Hence, it is "easy" to find an m for which s is the signature, $m = R^{-1}(VA(s))$
 - s is a valid signature for m (existential forgery)
 - Plain RSA dig sig suffers from existential forgery

Dig signatures with message recovery (6)

- **A good redundancy function although too redundant**
 - Example
 - $M = \{m : m \in \{0, 1\}^n\}$, $M_S = \{m : m \in \{0, 1\}^{2n}\}$
 - $R: M \rightarrow M_S$, $R(m) = m||m$ (concatenation)
 - $M_R \subseteq M_S$
 - When n is large, $|M_R|/|M_S| = (1/2)^n$ is small.
 Therefore, for an adversary it is unlikely to choose an s that yields $VA(s) \in M_R$
Redundancy function for RSA

- **ISO/IEC 9776** is an international standard that defines a redundancy function for **RSA** and **Rabin**
- Multiplicative property\(^(*)\) of RSA
 - **Requirement on R**: a **necessary condition** for avoiding existential forgery is that \(R \) must not satisfy the multiplicative property.

\(^(*)\) Homomorphism property

Dig sig with appendix (1)

- **Definitions**
 - \(M \) is the message space
 - \(H \) is a hash function with domain \(M \)
 - \(M_h \) is the image of \(h \)
 - \(S \) is the signature space
- **Key generation**
 - Alice selects a private key \(d_A \) which defines a **signing algorithm** \(S_A \) which is a **one-to-one** mapping \(S_A : M_h \rightarrow S \)
 - Alice defines the corresponding public key \(e_A \) defining the **verification algorithm** \(V_A \) such that \(V_A(m^* , s) = \text{true} \) if \(S_A(m^*) = s \) and false otherwise, for all \(m^* \in M_h \) and \(s \in S \), where \(m^* = H(m) \) for \(m \in M \).
Digital signatures

Signature generation process
- Compute $m^* = h(m)$, $s = S_A(m^*)$
- Send (m, s)

Verification process
- Obtain A’s public key V_A
- Compute $m^* = H(m)$, $u = V_A(m^*, s)$
- Accept the signature iff $u == true$
Dig sig with appendix (4)

- **Properties of** S_A **and** V_A
 - **(efficiency)** S_A should be efficient to compute
 - **(efficiency)** V_A should be efficient to compute
 - **(security)** It should be **computationally infeasible** for an entity other than A to find an $m \in M$ and an $s \in S$ such that $V_A(m^*, s) = true$, where $m^* = h(m)$

Dig sig with appendix from message recovery

- **Signature generation**
 - Compute $m^* = R(h(m))$, $s = S_A(m^*)$
 - A's digital signature for m is s
 - m, s are made available to anyone who may wish to verify the signature

- **Signature verification**
 - Obtain A's public key V_A
 - Compute $m^* = R(h(m))$, $m' = V_A(s)$, and $u = (m' == m^*)$
 - Accept the signature iff $u = true$

- **Comment**
 - R is not security critical anymore and can be any one-to-one mapping
Hash-and-sign paradigm

• Given
 – A signature scheme \(\pi = (G, S, V) \) for “short” messages of length \(n \)
 – Hash function \(H : \{0, 1\}^* \rightarrow \{0, 1\}^n \)

• Construct a signature scheme \(\pi' = (G, S', V') \) for messages of any length
 – \(S'(sk, m) = S(sk, H(m)) \)
 – \(V'(m, \sigma) = V(H(m), \sigma) \)

Hash-and-sign paradigm

• **THM.** If \(\pi \) is secure and \(H \) is collision-resistant then \(\pi' \) is secure

 • **Proof (by contradiction)**

 • Let us assume that the sender authenticates \(m_1, m_2, \ldots \) and the adversary manages to forge \((m', \sigma') \), \(m' \neq m_i \) for all \(i \)

 • Let \(h_i = H(m_i) \). Then, we have two cases
 • If \(H(m') = h_i \) for some \(i \), then collision in \(H \) (contradiction)
 • If \(H(m') \neq h_i \), for all \(i \), then forgery of \(\pi \) (contradiction)