The IpSec architecture

Security in Networked Computing Systems

Roadmap

- Basic architecture
- Tunnel and transport mode
- Encapsulating Security Payload (ESP) Authentication Header (AH)
- Internet Key Exchange (IKE)

IpSec in a nutshell

- IpSec is an IETF proposal for security at IP level
 - RFC 2041, 2042, 2046, 2048
- IpSec is based on IP (raw socket) and is compliant with
 - IPv4 (optional): protocol field;
 - IPV6 (mandatory): next header
- IpSec makes it possible to
 - Establish secure end-to-end channels
 - Create VPN over public networks

IpSec

16/05/16

Security services

- Integrity of datagrams
- Origin authentication
- Anti-replay mechanism
- Confidentiality
 - Partial confidentiality of traffic flow

Protocolli in IPsec

- IPsec is composed of three protocols
- Authentication Header (AH)
 - Packet authentication
- Encapsulating Security Payload (ESP)
 - Packet confidentiality and authentication
- Internet Key Exchange (IKE)
 - Negotiatioon of security parameters
 - Authentication and key exchange

IpSec

16/05/16

Services & Protocols

	АН	ESP (cifr.)	ESP (cifr. & aut.)
Datagram integrity	X		Х
Data origin authentication	X		Х
Anti-replay	X	X	Х
Confidentiality		Х	X
Partial confidentiality		X	Х

Unidirectional association between two hosts

(you need two associations for bidirectional security)

- In an IP pkt, an SA is identified by three parameters
 - Security Parameter Index (SPI)
 - IP Destination Address
 - Security Protocol Identifier (AH or ESP)

IpSec

16/05/16

Parameters of an SA

- Sequence number counter (32 bit counter, mandatory)
- Sequence counter overflow (flag, mandatory)
- Anti-replay window
- AH information
- ESP information
- Lifetime
- IPSec protocol mode (tunnel, transport, wildcard)
- Path MTU

Traffic **<->** Security Associations

- How does IPSec associate traffic flows to security associations?
 - Security Policies Database
 - Security Associations Database

IpSec

Database di sicurezza

Security Association Database

 SAD specifies parameters associated to each SA

Security Policy Database

- SPD relates *outgoing* traffic portions to SAs
- A traffic portion may be associated to none, one or more SAs

16/05/16

Security policies: examples

- All traffic towards 192.168.2.3 must be protected by ESP in transport mode using DES-CBC
- All FTP traffic (TCP/20) towards 192.168.2.3 must be protected by ESP in tunnel mode using 3DES-CBC
- All traffic towards 192.168.2.3 must be not protected
- All traffic towards 192.168.2.3 must be discarded

IpSec

16/05/16

SPD: selectors

- SPD contains policy entries, each of which specifies an IP traffic portion and the SA for that portion
- An IP traffic portion is specified by selectors
 - Destination IP Address
 - Source IP Address
 - Userid
 - Data Sensitivity Level (Classified,...)
 - Transport Layer Protocol
 - Ipsec Protocol
 - Source And Destination Port
 - Ipv6 Class
 - Ipv6 Flow Label
 - TOS, Ipv4 Type Of Service

Sending a packet

IpSec

Packet reception

- Transport mode
 - Protect the packet payload
 - Typically, e2e secure communication between two hosts (client, server)
- Tunnel mode
 - Protect the entire packet
 - Original packet is encapsulated within an outer packet
 - Typically, a secure tunnel between two security GWs (firewalls, ipsec-enabled routers,..)

16/05/16

Between two end-systems

IpSec

IPsec Transport mode

- Give protection to higher level protocols (e.g., TCP, UDP, SNMP, ICMP)
 - No protection to variable fields of IP header
 - Network addresses in the IP header are not modified (they must be routable)

IPsec Tunnel mode

IPsec Tunnel mode

IpSec

16/05/16

Ipsec Tunnel mode

- Always used when one host is a gateway
- Protect the whole original packet including the variable fields
- Addresses in outer pkt's header may be different from those in the inner pkt's header

0

IpSec

Header IPv4

4

8

	versione	IHL	TOS	Total Lenght		enght
Identification		Flags Header checksun		ader checksum		
	T.	TL	Protocol	Header Checksum		hecksum
	Source IP Address					
Destination IP Address						
	Options					Padding

	Transport mode	Tunnel mode	
Authenticate payload and selected portions of IP header and extension headers (IPv6)		Authenticate the entire inner pkt and selected portions of the outer pkt	
ESP	Encrypt the payload and extension headers (IPv6)	Encrypt the entire inner pkt	
ESP + auth Encrypt the payload and extension headers (IPv6) Authenticate payload (but not header)		Encrypt inner pkt Authenticate inner pkt	

16/05/16

16

Functionalities

31

Header IPv4

- Src and dst IP addresses [32 bit]
- Internet Header Length (IHL) [32 bit]
- Type Of Service (TOS)
- Length (sizeof (pkt) in bytes)
- Identification: pkt ID (for fragmets)
- Flags: may/don't fragment; last/more fragments
- Time To Live (TTL): number of hops
- Protocol: protocol used by payload
- ...other fields...

IpSec

16/05/16

24

IPSec

AUTHENTICATION HEADER

Authentication Header (AH)

- IPv4/IPv6 extension for pkt authentication (IP protocol 51, RFC-2402)
- Offered services
 - Pkt authentication
 - Data integrity
 - Data origin authentication
 - anti-replay
- Algoritmi utilizzati: HMAC
 - HMAC-MD5-96
 - HMAC-SHA-1-96

IpSec

16/05/16

Formato di AH

0	8	16 3	31
Next Header	Payload Lenght	Reserved	
Security Parameter Index (SPI)			
Sequence number			
	Authentication Da	ta (variable lenght)	

AH format

- Next Header (8 bit) specify the next header
- Payload Length (8 bit) length of AH in 32-bit word minus two
- Reserved (16 bit) future uses
- SPI (32 bit)
- Sequence number (32 bit)
- Authentication data: contains Integrity Check Value
- Variable length
 - multiple of 32 bits (default 96)
 - MAC or a truncated version (96 bit)

IpSec

16/05/16

AH: Transport mode

AH: tunnel mode

IpSec

How AH is built

How AH is built

- 1. Authentication Data is initially zeroed
- 2. Append payload
 - Transport mode: IP pkt's payload
 - Tunnel mode: the whole IP pkt
- 3. Normalize IP header (mutable fields are zeroed)
 - Mutable fields (es. TTL, hop count) are restored after MAC computation
- 4. Compute ICV of normalized IP header, AH and payload
- 5. Copy ICV into the Authentication Data field

IpSec

16/05/16

Data origin authentication

Protection level of AH

- In transport mode, authentication covers
 - The entire original IP pkt but mutable fields in the original IP pkt's header
- In tunnel mode, authentication covers
 - The entire inner IP pkt and
 - · Header of the outer pkt but mutable fields

IpSec

Anti-replay

Upon SA creation, src initializes counter to zero

16/05/16

- Before sending a pkt, src increments counter by one and copies value in the pkt's Sequence Number field
 - When the counter wraps around, src terminates and renegotiate the SA
- As IP does not guarantee delivery and ordering, rcv implements a window mechanism
 - Default window length is 64

Anti-replay Window

If a pkt falls outside of the window, on the right, the window is shifted forward and the pkt becomes the upper bound

A non-valid pkt or a pkt that falls outside the window, on the left, is discarded

IpSec

16/05/16

36

IPSec

ENCAPSULATING SECURITY PAYLOAD

Encapsulating Security Payload (ESP)

- IPv4/IPv6 extension for pkt encryption (IP protocol 50, RFC-2406)
- Services
 - Confidentiality of payload
 - Partial confidentiality of traffic
 - Optional authentication limited to payload
- Algorithms
 - DES in CBC mode (required)
 - 3DES, RC5, IDEA, 3IDEA, CAST, Blowfish (optional)
 - HMAC-MD5-96, HMAC-SHA-1-96

IpSec

16/05/16

38

ESP format

ESP format (\rightarrow)

- Security Parameters Index (SPI)
- Sequence number (32 bit): anti replay
- Payload data encrypted data
 - A possible initialization vector is placed at the beginning of the field
- *Padding* (0 255 byte)
- Padding length
- *Next Header* (8 bit): type of data in the payload

16/05/16

Authentication Data: ICV

IpSec

IpSec

ESP format (\downarrow)

- *Header ESP* is composed of
 - SPI
 - Sequence Number
- Trailer ESP is composed of
 - Padding,
 - Padding Lenght
 - Next Header
- Authentication ESP contains Authentication Data

16/05/16

ESP Transport mode

IpSec

16/05/16

42

ESP in modalità Trasporto

- Authentication does not cover IP header
- ESP provides a smaller authentication coverage than AH

ESP Tunnel mode

ESP tunnel mode

- Authentication does not protect the outer ip pkt header
- ESP provides a smaller coverage than AH

How ESP header is built

- 1. Build header ESP
- 2. Append the payload
 - Transport mode: the original IP pkt's payload
 - Tunnel mode: the entire original IP pkt
- 3. Build ESP trailer ESP and append it to the payload
- 4. Encrypt payload and trailer ESP
- If required, compute HMAC of ESP header and cyphertext, and append resulting ICV into the ESP Authentication

On padding

- ESP requires that padding length and next header are aligned at the MSB of a 32-bit word
- Padding may be inserted in order to not reveal the actual payload length

IpSec

16/05/16

48

IPSec

COMBINATION OF SECURITY ASSOCIATIONS

IpSec

Bundles

- Security Policy.
 - A military application requires: (i) payload is encrypted; (ii) field *Options* of the IP header specifies sensitivity labels: (iii) it is not possible to modify the *Options* field. Notice that neither AH nor ESP, separately, is sufficient to implement this policy.
 - AH does not encrypt the payload
 - · ESP does not authenticate the IP header
- An SA bundle is a combination of two or more Sas
 - Algorithms of SAs are sequentially applied to the same packet

IpSec

16/05/16

Combinations of SAs

- SAs can be combined in a bundle as follows
 - transport adiacency apply several security protocols without any tunnelling

 Only one level of combination; further levels of combinations are useless

- iterated tunnelling apply several security protocols through tunnelling as each tunnel may have src or dst at a different IPSec host
- A combination of both approaches is possible

16/05/16

• Four combinations are mandatory

Example: authentication and confidentiality

ESP with authentication option

- Transport mode
- Tunnel mode
- Authentication applied to cipher-text

Bundle

- Bundle transport adiacency
 - Inner: ESP (without authentication); outer: AH
 - Authentication protects ESP and original IP header (but mutable fields)
- Bundle transport-tunnel
 - Inner: AH transport; outer: ESP tunnel
 - Authentication is applied to clear-text

IpSec

16/05/16

Basic combinations

16/05/16

Combinations

- 1. AH in transport mode
- 2. ESP in transport mode
- 3. Transporty adiacency: inner: ESP; outer: AH
- 4. Combination 1|2|3 within AH|ESP tunnel

Case 2: security between gateways (simple VPN)

Combination

• A single SA in tunnel mode

IpSec

16/05/16

54

Basic combinations

Case 3: end-to-end security + security between gateways

Combinations

• The same combinations as Case 1 and 2

Basic combinations

Case 4: remote host

Combinations

- A tunnel between the host and the dst gw
- Combinations 1a, 1b, 1c between hosts

IpSec

16/05/16

56

IPSec

IPSEC IN IPV6

Structure of an IPv6 packet

IpSec

16/05/16

IPv6 ed IPsec

Types of Extension Header:

- 1. Hop-by-hop options header
- 2. Routing header
- 3. Fragment header
- 4. Authentication Header
- 5. Encapsulating Payload Header
- 6. Destination options header

IPv6	Extension	Extension	Transport-
Header	Header	 Header	level PDU

IPSec INTERNET KEY EXCHANGE (IKE)

IpSec

16/05/16

63

Internet Key Exchange (IKE) – RFC 2409

IKE implements the following functions

- Negotiation of security parameters
- Authentication
- Key establishment
- Key management (after establishment)
- •UDP/500

IKE protocol suite

IKE is composed of

- SKEME
 - PK-based authentication protocol
- OAKLEY
 - DH-based key establishment protocol
- ISAKMP
 - Internet Security Association and Key Management Protocol
 - · Framework for key management

IpSec

16/05/16

IKE: phases

- Initial event
 - A peer generates or receives a portion of data traffic that has to be IPSec protected
- Peers activate IKE
 - IKE PHASE 1: peers negotiate and establish a secure channel
 - IKE PHASE 2: peers use the secure channel to negotiate and establish 2 SAs
- Now, peers can generate data traffic

IpSec

IKE Phase I

 Main implementations of main and aggressive modes

16/05/16

- main mode using preshared key authentication
- main mode using digital signature authentication
- aggressive mode using preshared key authentication
- But also
 - main mode using encrypted nonces authentication
 - aggressive using digital signature authentication

- Negotiation
- Authentication
- Key distribution
- Modes
 - main mode (6 messages)
 - aggressive mode (3 messages)

IKE Phase 2

- Obiettivi
 - Negotiation
- Modes
 - Quick mode (3 messages)

16/05/16

Diffie-Hellman protocol

- Pros
 - · Secret key is generated only when needed
 - Key establishment does not require any pre-existing infrastructure but the knowledge of global parameters (p and g)
- Cons
 - No guarantee on peer identitity
 - Subject to MiM
 - · Computationally demanding

IpSec

16/05/16

72

MiM

IpSec

Clogging attack (SDos)

Diffie-Hellman protocol

 $A \to B: \quad A, g^a \mod p$ $B \to A: \quad B, g^b \mod p$

The clogging attack

 Adversary M masquerades as Alice and makes Bob to repeatedly perform mod exp so exhausting his computational resources

$$A[M] \to B: \quad A, X$$
$$B \to A: \qquad B, g^b \mod p$$

Oakley protocol

- The protocol has been conceived to maintain DH pros while overpassing DH cons
- Protocol features
 - Use cookie to contrast clogging attacks (DoS)
 - Allow group negotiation (p, g)
 - Support anti-replay
 - Authenticate the exchange of DH pubK so avoiding

16/05/16

Cookie: anti-clogging mechanisms

A cookie is a nonce

	$A \rightarrow B$: $cookie_A$
	$B \rightarrow A$: $cookie_B$
Bob computes mod exp iff he	$A \rightarrow B$: $A, cookie_A, cookie_B, (g^a \mod p)$
sees cookieb in M3	$B \rightarrow A$: B , cookie _A , cookie _B , $(g^b \mod p)$
An adversary can only make B	$A[M] \rightarrow B: cookie_A$
to communicate his cookie	$B \rightarrow A$: $cookie_B$
	$A[M] \to B: A, cookie_A, cookie_B, \left(g^a \mod p\right)$
	$B \to A$: B , cookie _A , cookie _B , $(g^b \mod p)$

ISAKMP RFC recommends that a cookie (8 byte) is implemented as follows cookie = $H(IP_{dest}, IP_{source}, Port_{dest}, Port_{source}, random number, time stamp)$

IpSec

16/05/16

Phase I: main mode (preshared key authentication)

1.
$$A \rightarrow B$$
: c_a
2. $B \rightarrow A$: c_b
3. $A \rightarrow B$: c_a, c_b, X_a, N_a
4. $B \rightarrow A$: c_a, c_b, X_b, N_b
5. $A \rightarrow B$: $c_a, c_b, \{A, h(SKEYID_a, c_a, c_b, PSK_{ab}, prev. msg., A)\}_{SKEYID_e}$
6. $B \rightarrow A$: $c_a, c_b, \{B, h(SKEYID_a, c_a, c_b, PSK_{ab}, prev. msg., B)\}_{SKEYID_e}$
cookie c_a, c_b ; pre-shared key: PSK_{ab}
 $SKEYID = PRF(PSK_{ab}, N_a, N_b)$
 $SKEID_d = PRF(SKEYID, g^{ab}, c_a, c_b, 0)$
 $SKEID_a = PRF(SKEYID, SKEYID_d, g^{ab}, c_a, c_b, 2)$

DH-based protocol

Quick mode

- DH-based key establishment
- Use keys defined in Phase I

1.
$$A \rightarrow B$$
: $c_a, c_b, \begin{cases} h(SKEYID_a, 1, N'_a, X'_a, rest of msg), \\ N'_a, X'_a, A, B, rest of msg \end{cases} \\ s_{KEYID_e} \end{cases}$
2. $B \rightarrow A$: $c_a, c_b, \begin{cases} h(SKEYID_a, 2, N'_a, N'_b, X'_b, rest of msg), \\ N'_b, X'_b, A, B, rest of msg \end{cases} \\ s_{KEYID_e} \end{cases}$
3. $A \rightarrow B$: $c_a, c_b, \{h(SKEYID_a, 3, N'_a, N'_b)\}_{SKEYID_e}$

IpSec

16/05/16

75

IPSec

A SIMPLE EXAMPLE

Example: LAN-to-LAN VPN

10.1.2.0/24

• Authentication method: preshared keys

10.1.2.0/24

- 1. ISAKMP policy: (3des, sha, pre-shared key)
- 2. Security association: (tunnel mode, esp-3des esp-md5-hmac)
- 3. IpSec peer: address = 172.16.172.20
- 4. Pre-shared key: key = jw4ep9846804ijl; address = 172.16.172.20
- 5. Security policy: permit ip 10.1.1.0/24 10.1.2.0/24

Example: configuration of router 2

10.1.1.0/24

10.1.2.0/24

- 1. ISAKMP policy: (3des, sha, pre-shared key)
- 2. Security Association: (tunnel mode, esp-3des esp-md5-hmac)
- 3. IpSec peer: address = 172.16.172.10
- 4. Pre-shared key: key = jw4ep9846804ijl; address = 172.16.172.10
- 5. Security policy: permit ip 10.1.2.0/24 10.1.1.0/24

IpSec

16/05/16