
Random and Pseudorandom

Bit Generators

! Random bit generators

! Pseudorandom bit generators

! Cryptographically Secure PRBG

! Statistical tests

!"#$%&'()"*+&,#- .

Unpredictable quantities

! The security of many cryptographic systems depends on

the generation of unpredictable quantities

! These quantities must be of sufficient size and

random in the sense that

! the probability of any particular value being selected must be

sufficiently small to preclude an adversary from gaining

advantage through optimizing a search strategy based on such

probability

Random bit generator

!"#$%&'()"*+&,#-

! RBG requires a naturally occurring source of

randomness

RBG

Probability of emitting a bit (1 or 0) value does not depend on the

previous bits

Probability of emitting a bit value (1 or 0) is equal to 0.5

Sequence of statistically

independent and unbiased bits

!"#$%&'()"*+&,#- /

Hardware-based RBG

! HW-based RBGs exploit the randomness in some
physical phenomena

! elapsed time between emission of particles during
radioactive decay

! thermal noise from a semiconductor diode or resistor

! the frequency instability of a free running oscillator

! the amount a metal-insulator semiconductor capacity is
charged during a fixed period of time

! air turbulence within a sealed disk drive which causes
random fluctuations in disk drive sector read latency
times

! sound from a microphone or video from a camera

!"#$%&'()"*+&,#- 0

Software-based RBG

! Random processes used by SW-based RBGs include

! the system clock

! elapsed time between keystrokes or mouse movement

! content of input/output buffers

! user input

! operating system values such as system load and

network statistics

! A well-designed SW-based RBG uses as many

sources as available

!"#$%&'()"*+&,#- 1

Design and implementation problems

! RBG must not be subject to observation and

manipulation by an adversary

! The natural source of randomness is subject to

influence by external factors and to malfunction

! RBG must be tested periodically

!"#$%&'()"*+&,#- 2

De-skewing techniques

! A natural source of randomness may be defective and

produce biased and correlated output bits

! De-skewing techniques make it possible to generate

truly random bit sequences from the output bits of a

defective generator

! De-skewing techniques

! provable

! practical

!"#$%&'()"*+&,#- 3

Pseudorandom bit generation

RBGs raise problems

! Generation of (truly) random bits is an

inefficient procedure in most practical systems

! Storage and transmission of a large number

of random bits may be impractical

! These problems can be ameliorated by

substituting a RBG with a Pseudorandom Bit

Generator (PRBG)

!"#$%&'()"*+&,#- 4

Famous quotes

!"#$%&'($)'*+,-(-.&)/%($&0(*+(1+$+,#0+%(230.(#(

'+0.&%(4.&-+$(#0(,#$%&'56(!!"#$%&'()'*#+,-

!7.+(1+$+,#03&$(&8(,#$%&'($)'*+,-(3-(0&&(3'9&,0#$0(0&(

*+(/+80(0&(4.#$4+56!."/01,'.)'2"304"+

!:$;&$+(2.&(4&$-3%+,-(#,30.'+034#/('+0.&%-(&8(

9,&%)43$1(,#$%&'(%3130-(3-<(&8(4&),-+<(3$(#(-0#0+(&8(-3$6

!5"-#'3"#'60+7$##

!"#$%&'()"*+&,#- 56

Pseudorandom Bit Generator

PRBG
k-bit truly

random seed

L-bit, L >> k, pseudo

random bit sequence

"#$"%&$''($)*+%)$,-./

! PRBG is a deterministic algorithm

! An adversary must not efficiently distinguish

between output sequences of PRBG and truly

random bit sequences

!"#$%&'()"*+&,#- 55

Requirements

! Minimum security requirement

! k should be sufficiently large to make an exhaustive search over 2k

seeds practically infeasible

! General requirements

! A PRBG passes all polynomial-time statistical tests if no

polynomial-time algorithm can correctly distinguish between an

output sequence of the generator and a truly random sequence of

the same length with probability significantly greater than 0.5

! A PRBG passes the next-bit test if there is no polynomial-time

algorithm which, on input of the first l-bits of an output sequence s

can predict the (l + 1)st bit of s with probability significantly greater

than 0.5

! These two requirements are equivalent

! A PRBG that passes tests is said cryptographically secure

!"#$%&'()"*+&,#- 5.

Ad-hoc PRBG

! One-way functions can be used to generate

pseudo-random bit sequences

counter hash bit sequence

(initial value random and

secret)

counter Ek bit sequence

(initial value equal to 0)

! Although ad-hoc techniques have not proven to be cryptographically

secure, they appear sufficient for most applications

!"#$%&'()"*+&,#- 57

Ad-hoc PRBG: ANSI X9.17 generator

Let s be a 64-bit random seed, m be an integer, k be DES E-D-E

encryption key, and D be a 64-bit representation of time/date

1. Let I = Ek(D)

2. For i = 1 to m do

1. Let xi Ek(I s)

2. Let s Ek(xi s)

3. Return(x1, x2,!"#xm)

X9.17 generator is used to pseudorandomly generate

keys and initialization vectors for use with DES

!"#$%&'()"*+&,#- 5/

Ad-hoc PRBG: FIPS 186

! FIPS-approved methods for pseudo-randomly

generating

! DSA private key a

! DSA per-message secret k

! Both algorithms use a randomly generated secret

seed s and one-way function constructed by using

either SHA-1 or DES

!"#$%&'()"*+&,#- 50

CSPRBG

The security of Cryptographically Secure PRBGs (CSPRBG)

relies on the presumed intractability of an underlying

number-theoretic problem

! RSA pseudorandom bit generator is a CSPRBG under the

assumption that RSA problem is intractable

! Blum-Blum-Shub pseudorandom bit generator is a CSPRBG

under the assumption that integer factorization is

intractable

! These CSPRBGs make use of modular multiplication which

makes them relatively slower than ad-hoc PRBG

!"#$%&'()"*+&,#- 51

RSA CSPRBG

1. Generate two primes p and q, and compute n = pq and =

(p 1)(q 1). Select a random integer e, 1 < e < , such

that gcd(e,) = 1.

2. Select a random number x0 (the seed) in the interval

[1, n 1]

3. For i = 1 to l do

1. Let xi xe
i 1 mod n

2. Let zi lsb(xi)

4. Return(z1, z2"#!"#zl)

!"#$%&'()"*+&,#- 52

Statistical tests

! A set of statistical tests have been devised to measure the

quality of a random bit generator

! While it is not possible to prove whether a generator is

indeed a random bit generator, these tests detect certain

kinds of weaknesses the generator may have (necessary

conditions)

! Each test takes a sample output sequence and

probabilistically determines whether it possesses a certain

attribute that a truly random sequence would be likely to

exhibit

! Ex.: a *(01(,2(%*#.13-%).14#35%#$6(%"#(%*$/(%,1/7()%.8%9:*%$*%;:*

! A generator may be rejected or accepted (not rejected)

!"#$%&'()"*+&,#- 53

Statistical tests: basic tests

! Frequency test (monobit test). The purpose of this test is to

-("()/<,(%=#("#()%"#(%,1/7()%.8%;:*%$,-%9:*%$)(%

approximately the same

! Serial test (two-bit test). The purpose of this test is to

determine whether the number of occurrences of 00, 01, 10,

11 are approximately the same

! Poker test. The purpose of this test is to determine whether

the sequences of length m each appear approximately the

same number of times

! Runs test. The purpose of this test is to determine whether

the number of runs of various length is as expected for a

random sequence

! Autocorrelation test. The purpose of this test is to check

correlations between the sequence and shifted versions of it

!"#$%&'()"*+&,#- 54

Statistical tests

! Statistical tests give only necessary conditions

for a periodic pseudorandom sequence to look

random

! Linear congruential pseudorandom generator

xn = a xn 1 + b mod n, n 1
passes statistical tests

However, it is predictable and hence entirely insecure for

cryptographic purposes

! FIPS 140-1 specifies statistical tests for

randomness

