
1

Intrusion tolerance

Prof. Cinzia Bernardeschi
Department of Information Engineering
University of Pisa

Pisa, 15 Novembre 2011

2

Classical security work:
- intrusion prevention
- intrusion detection

A new approach that emerged during the past
decade:

- intrusion tolerance

Intrusion tolerance: coined by Joni Fraga and David Powell
“A Fault- and Intrusion-Tolerant File System”, IFIP SEC,1985

3

Assume (and accept) that systems remain to a certain
extent vulnerable

Assume (and accept) that attacks on components or
subsystems can happen and some will be successful

assures that the overall system neverthless remains
secure and operational

(the tolerance paradigm in security)

What is intrusion tolerance?

4

Typical security properties are:
- Confidentiality
- Authenticity
- Integrity

The question is:
How do we let data be read or modified by an intruder; and still

ensure confidentiality, authenticity or integrity?

An intrusion-tolerant system can maintain its security properties
despite some of its components being compromised.

Appeal:
since it’s impossible to prove that a system has no
vulnerabilities, it is more safe to assume that intrusions
can happen.

5

Reliability & Security
The “tolerance” paradigm was first applied in Reliability

Reliability and fault tolerant computing:
a fault-tolerant system is a system that can continue to
deliver a correct service in the presence of faults

system
input output

System service
what the system is intended for. It is given by the input-otput relation

6

Chip (motor) suffers permanent electrical damage
Undersized fan (design fault) allows overheating on hot days: chip
malfunction (physical fault); the machine work OK after cooling down
(the fault is transient)
Operator pushes the wrong button
One or two fans “burns out” (physical fault)
Repairman switches off the wrong fan (maintenance fault)
Cosmic ray particle causing transient “upsets” in execution
Defect in software
Software virus

Types of faults

A fault tolerant system is designed to keep
working even when some of its components fail

7

Systems and components
A system is made out of components
For instance:

CPU

Display

Keyboard

Program
Memory

Data
Memory

Each component is a system in its own right

INTERCONNECTION

COMPUTER

8

Other examples

Communication
network

Travel reserv
system

Travel reserv
system

Travel reserv
system

Travel reserv
system

…….

workstation operator

database
server

interface with
airlines

interface with
customer

Travel reservation system (simplified)

network

9

A system is designed to provide a certain service

If the system stops delivering the intended service, we call this
a failure (the correct service may later restart)

For instance, a computer
- prints the wrong number
- puts garbage in a file, stops working
- stalls the car’s engine or revs it too fast
- delivers 200 euro when you asked for 10 euro

We we call the cause of failures, faults
A fault causes an error in the internal state of the system. The
error cause the system to fail

Fault, error and failure

10

From: A. Avizienis, J.C. Laprie, B. Randell, C.E. Landwehr. Basic Concepts and Taxonomy
of Dependable and Secure Computing.IEEE Trans. Dependable Sec. Comput. 1(1): 11-33 (2004)

Fault / error/ failure chain

11

Computer failures differ from failures of other equipment

Subtler failure than breaking down, stopping working
the computer is used to store information: there are many ways
information can be wrong, many different effects both within and
outside the computer

Transient faults have permanent effects

Small, hidden faults may have large effects (digital control
systems)

Computing systems are complex design hierachies relying on
hidden components

Computer failures

12

Reliability & Security

Reliability and Security are different aspects of
Dependability

Dependability
is “that property of a computer system such that
reliance can justifiably be placed on the service it
delivers”

J.C. Laprie (ed.),
Dependability: Basic Concepts and Terminology, Springer-Verlag, 1992

13

Reliability of a system
a measure of the continuous delivery of correct service

Availability of a system
a measure of the alternation between delivery of correct service and
incorrect service

Dependability

Safety of a system
a measure of the time to catastrophic failure

Security of a system
prevention of unauthorized access and/or handling of information

Another attribute is:
Maintainability
a measure of the time to restoration

14

Reliability of a system
the reliability of a system as a function of time, R(t), is the conditional
probability that the system performs correctly throughout the interval of
time [t0, t], given that the system was performing correctly at time t0.

Availability of a system
the availability of a systems as a function of time, A(t), is the probability
that the system is operating correctly and is available to perform its
functions at the instant of time t.

Dependability Measures
The different dependability properties can be measured
in terms of probabilities:

(difference: repairs affect availability not reliability)

15

Safety critical systems
systems in which the computer is serving a critical function
that cannot be suspended even for the duration of a repair (as in
railway-signalling control systems, flight computers on aircrafts, ...)

when digital control systems (DCS) are used in safety critical
applications, we need to have sufficient confidence that the system
will fail

- sufficiently infrequently or
- with sufficiently low probability during a particular
length of time

Examples of Reliability requirements in safety critical systems:
- Flight control systems (excluding software faults)

10-9 prob. of failure per flight hours
- Railway signalling and control

10-12 prob. of failure per hour for urban trains
-

L. Strigini and B. Littlewood, Validation of Ultra-High Dependability for Software-based
Systems, Communications of the ACM, Vol. 36, No. 11, November 1993.

Development of high dependable systems

16

REDUNDANCY

DIVERSITY

INDEPENDENCE

different kinds of diversity on the assumption of maximal
independence of redundant channels realizing design

versions

Digital control systems

defense-in-depth approach

Common Cause Failure
a failure of two or more structures, systems or components due to a
single specific event or cause (fault)

17

Redundancy, diversity and independence are basic concepts of a defense-in-depth
approach:

1. redundancy
alternative systems and components are included, so that any one can perform the
required function if the others fail

2. diversity
for a particular function, two or more redundant systems or components with different
attributes are included in the design. In practice, it may mean using different
components based on different designs and principles, from different vendors

3. independence
prevents the propagation of failures and common cause failures due to common
internal plant hazards. Independence is achieved by electrical isolation, physical
separation and independence of communications between systems

Defense-in-depth approach

18

From “The standard IEC 62340 Nuclear Power Plant – I&C system important to safety –
requirements for coping with CCF”, A. Lindner, H-W Bock, NPIC&HMIT 2009,
American Nuclear Society.

Scheme of a digital safety I&C system

19

Scheme of a fourfold redundant safety I&C system comprising
two independent I&C systems A and B

The channels of independent systems and the systems are spatially separated

The systems A and B can be designed by
different Programmable Logical Controllers
different set signals
different I&C functions

Replicas have different starting time to avoid failures triggered
by the same runtime

Functional diversity
Existence of diverse measurement signals, actuators and functions in the
plant system

Diverse functions:
functions that ensure independently that the plant safety targets are met

Diverse I&C functions have to be assigned to independent I&C systems

20

resilience builds on the initial definition of dependability and cover the
ability to successfully accommodate unforeseen environmental
perturbations or disturbances

A shorthand definition of Resilience is:
- the persistence of dependability in spite of continuous changes

Resilience

consider large, networked,
evolving, systems either
fixed or mobile, with
demanding requirements
driven by their domain of
application (critical
infrastructures,
transportation systems,
…)

Ubiquitous systems

Transportation
(Air)

Vital Human Services

Information

Government

Transportation
(Ship)

Transportation
(Rail)

Banking & Finance

Energy

Telecommunication

From Dependability to Resilience

21

Security

22

An intrusion has two underlying causes:

• Vulnerability
– malicious or non-malicious weakness in a computing or

communication system that can be exploited with
malicious intention

• Attack
– malicious intentional fault introduced in a computing or

communication system, with the intent of exploiting a
vulnerability in that system

Interesting corolaries:
– without attacks, vulnerabilities are harmless
– without vulnerabilities, there cannot be successful attacks

Attacks, Vulnerabilities, Intrusions

Fault Model for Security

23

AVI sequence:
attack + vulnerability

-> intrusion -> error -> failure

A specialization of the generic
“fault,error,failure” sequence

Fault Model for Security

24

Intrusion prevention

Attack: malicious intentional external fault attempted at
a computer or communication system

Vulnerability: internal fault

25

Traditionally security has evolved as a combination of:

• Attack prevention
ensuring attacks do not take place against certain components

• Attack removal
taking measures to discontinue attacks that took place

• Vulnerability prevention
ensuring vulnerabilities do not develop in certain components

• Vulnerability removal
eliminating vulnerabilities in certain components (e.g. bugs)

Intrusion prevention

26

Intrusion prevention: using attacks to
find vulnerabilities

27

Risk of intrusion

Should we try and bring the risk yo zero? Is that feasible at all?
-> it is too costly and/or too complex

We talk about acceptable risk: a measure of the failure probability
we are prepared to accept, given the value of of the service or
data we are trying to protect.

Probability of an intrusion: given by the probability of an
attack activating a vulnerability that is sensitive to it.
It depends on:

- level of threat to which the system is exposed
- degree of vulnerability of the system.

Risk = probablity of intrusions + serverity of intrusions

Serverity of intrusions: the impact of a failure caused
by the intrusions

28

Intrusion tolerance (IT)

Ensure continued correct service provision despite
attacks, vulnerabilities and intrusions

Effort is put in tolerating residual intrusions in the system

Intrusion: operational intentional fault that leads to
component failure

29

Error processing

- Backward recovery
- Forward recovery

Errors must not lead to system failures

Error detection
and recovery

Error masking

30

Error processing

31

Error detection
- for example, based on acceptance tests

Sub-
System 1

Sub-
System n

Acceptance
tests

Accepptance
tests

.

.

32

Error processing

Forward recovery
transform the erroneous state in a new state from which the system
can operate correctly

Backward recovery
bring the system back to a state prior to the error occurrence
- Checkpointing
- Recovery block

Error masking
redundancy techniques

33

Forward error recovery
Requires to assess the damage caused by the detected error or
by errors propagated before detection

Example of application:
real-time control systems, an occasional missed response to a
sensor input is tolerable

The system can recover by skipping its response to the missed
sensor input.

34

some subset of the system state is saved at specific points during program
execution (that is necessary to the continued successful execution)

Backward error recovery
Checkpointing

x

1

2

3

a

b 4

5

c 6

dProcess A

Process B

Process C

e

Checkpoint

x Error
Message passed

Cooperating checkpointing processes

Rollback: resetting the system and process state to the state
stored at the latest checkpoint.

35

Loss: computation time between the checkpointing and the rollback;
data received during that interval

overhead of saving system state/computation time for rollback

Basic issues:
- selecting checkpoints to minimize the amount of state

information that must be saved
- deciding which information must be backed up

restraining multiple rollbacks that arise when multiple concurrent
processes communicate with each other (domino effect)

Checkpointing

36

Backward error recovery
Recovery block

Basic structure: ensure T
by P

else by Q
else error

Each recovery block contains variables global to the block that will be
automatically checkpointed if they are altered within the block.
Upon entry to a recovery block, the primary alternate is executed and subjected
to an acceptance test (T) to detect any error in the result.
If the test is passed, the block is exited.
If the test is failed or the alternative fails to execute, the content of the recovery
cache pertinent to the block is reinstated, and the second alternate is executed.
This cycle is executed until either an alternative is successful or no more
alternatives exist. In this case an error is reported.

Only one single implementation of the program is run at a time

Accettability of the result is decided by an acceptance test T
checkpoint

Acceptance
test

37

(From Fault-Tolerant Computer System Design
D. K. Pradhan, Prentice Hall, 1996)

Primary
Version

Secondary
Version N-1

Secondary
Version 1

Program Outputs

.

.

.

.

Program Inputs

N-to-1
Program
Switch

Acceptance
Test

Test Result

A single acceptance test
Combines elements of checkpointing and backup
Minimizes the information to be backed up
Releases the programmer from determining which variables should
be checkpointed and when

Backward error recovery: Recovery block

38

Error masking
Triple Modular Redundancy (TMR)

Module 1

Module 3

Module 2 Voter
output

(From Design and Analysis of Fault-tolerant Digital Systems
B. W. Johnson, , Addison-Wesley 1989)

Triplicate the hw (processors, memories, ..) and perform a majority vote to
determine the output of the system

effects of faults neutralised without notification of their occurrence
masking of a failure in any one of the three copies

Sometimes some failures in two or more copies may occurr in such a way that
an error is avoided:

Example
- stuck at 1 in a module line; stuck at 0 in another copy;
the voted result is correct (compensating failures)
- failure at location 127 in a memory; failure at location 10 in another copy;
the voted result is correct

39

Intrusion tolerance (IT)

In the general case, we can not make assumptions about how the
hacker can act, a malicious-fault modelling methodology is
required.

How do we model the mind of an hacker?

The hacker is the perpretator of attacks on systems, a fault model
would be a description of what he/she can do.

40

Fault models
Node failures

-Byzantine
-Crash
-Fail-stop
-...

Communication failures
-Byzantine

-Link (message loss, ordering loss)

-Loss (message loss)

-...

Byzantine
Processes :
– can crash, disobey the protocol, send contradictory messages,

collude with other malicious processes,...

Network:
– Can corrupt packets (due to accidental faults)
– An attacker can modify, delete, and introduce messages in the network

41

The more general the fault model, the more costly
and complex the solution (for the same problem)

Byzantine
Crash
Fail-stop
No failure

GENERALITY COST / COMPLEXITY

How do we model the mind of an hacker?
Arbitrary failure approach (Byzantine failure mode)

Architecting IT systems

42

Architecting IT systems
We must consider the system model:
- Asynchronous
- Synchronous
- Partially synchronous
- …

Useful building blocks for the architect of IT systems:
- Tunnels, secure channels and envelopes
- Firewalls
- Criptographic protocols
- …..

43

Architecting IT systems

- Topological separation makes the intruder life
more difficult, in term of attack effort

a secret can be split through several sites, and getting
parts of it reveals nothing about the whole

Threshold cryptography

44

Given N processes each holding part of crypto secret

Secret sharing:
– Example: a shared secret key
– Any k-out-of-N processes combine their shares and

reconstruct secret s
– Any f=k-1 colluding or intruded processes cannot

reconstruct s

Function sharing:
– Example: a threshold signature
– k processes together execute function F
– f=k-1 colluding or intruded processes cannot execute F

Threshold cryptography

45

- Replication makes components more resilient to
damages in terms of integrity and availability, but
can also benefit confidentiality and authenticity
(e.g. replicated execution decisions to decide authorization of
access to a piece o data)

Architecting IT systems

Basic replication scheme: Triple Modular Redundancy
scheme (TMR)

Module 1

Module 3

Module 2 Voter
output

(From Design and Analysis of Fault-tolerant Digital Systems
B. W. Johnson, , Addison-Wesley 1989)

46

Intusion-tolerant protection for Critical
Infrustructure

Power grid

WAN of LANs and Computers
Security policy

CIS:
CRUTIAL
Information
Switch

47

- CIS deployed on the network border and inside the
network to protect critical equipment

- CIS uses a rich control access model
take into account different organizations and access
control rules that depend on context information

- CIS is intrusion tolerant:
operates correctly even if there are intrusions
in some of its components

CIS: Intrusion-Tolerant Firewall

48

CIS: architecture

Incomming
Traffic

Traffic
replication device

CIS

CIS

CIS

Generator

CIS

W

W

W

W

Traffic
replication device

- replicated in a set of different machines
-uses wormwhole W

Wormwhole:
trusted component
that cannot be
corrupted

49

- CIS is replicated in a set of n >= 2f +1 machines

- Each replica receives all packets to and from the LAN
and verifies if this packet satisfies some predefined
application level security policy
The “Traffic replication” devices are responsable of broadcasting
the Wan and LAN traffic to all replicas

- Intrusions modelled as Byzantine faults in at most f
replicas are masked (all valid packets are accepted and
all invalid packets are dropped)

- Local wormhole are connected thrugh an isolated
network

- Each CIS replica deployed in a different OS
OSs use different passwords and internal firewalls

CIS architecture

50

Challanges:
- CIS cannot modify the protocols themselves to obtain

intrusion tolerance

- Recipient nodes ignore any internal CIS intrusion
tolerance mechanism

- Recipients cannot protect themselves from messages
forwarded by faulty replicas not satisfying the
security policy

CIS architecture

51

- A Msg approved by a replica is sent to the W
- Local Ws vote between themselves. If the message is

approved by at least f+1 replicas, it is signed using a
secret key installed in the trusted component.

- One of the replica (leader) is responsable of
forwarding the approved msg to the its destination.

- Failure detection, leader election and recovery are
services provided by the wormwhole.

- When a quorun of replicas suspect some replica, it is
recovered.

CIS Intrusion-Tolerant Firewall

52

- Byzantine fault-tolerant (BFT) algorithms

are intrusion tolerance devices: they perform
error processing or masking and ensure
message delivery despite actual intrusions

they do not depend on trusted components for
their correct operation

they must build trust during execution without
trusting each other initially, and some maybe
being malicious

they tolerate attacks, intrusions and bugs

Architecting IT systems

53

Air Traffic Management
• Air Traffic Control (ATC)

is a service provided by
ground-based controllers
who are responsible for
maintaining a safe and
efficient air traffic flow.

• Future generation of ATC:
Airborne Self-Separation,
an operating environment
where pilots are allowed
to select their flight
paths in real-time.

ADS-B (AUTOMATIC DEPENDENT SURVELLEINCE BROADCAST):
based on the Global Navigation Satellite System (GNSS) -
broadcast communication links -

54

Airbone Self-Separation
• guarantee the correct behaviour of the system (i.e., the set

of aircraft in a given area) even in the presence of component
failures, or malicious attacks .

55

Airbone Self-Separation

Main challenge in Airborne Self-Separation:
coordination between aircraft within a dynamic
environment, where the set of surrounding aircraft is
constantly changing, and where there is the possibility
of arbitrary failures and malicious threats.

Conflict Resolution (and Traffic Optimisation) problem

Conflict Resolution algorithms are
decentralized and cooperative with the cooperation
between aircraft being based on “emergent” properties
of the system

56

Conflict Resolution algorithms
based on theory of decision-making based on a multi-
agent approach and Game Theory (SGT)

- SGT as decision procedure

- a fault-tolerant Byzantine agreement protocol
that provides SGT the necessary services to
execute correctly

- the agreement protocol is supported by suitable
communication primitives realised for wireless
networks

57

Conflict Resolution algorithms
System model:

multi-agent system
Aicraft: agent
Aircraft state (local information):
state_i = (aircraft id, destination, current_time,

coordinates, speed, ….)
Region:
surrounding aircrafts involved in the calculation
of the flight path (changing)

Decision procedure:
algorithm applied at every agent i based on

- agent state (local information)
- state of the agents in the region

(information received from sorrounding aicrafts)

58

Decision procedure
Every aircraft must decide its flight path: to execute correctly it is necessary

that every agent has the correct view of the system

Let n be number of agents in a region,
Agent_i: decision_procedure(i, state_1, state_2, …, state_n)

every agent applies the decision procedure starting from the same
information on the state of the aircrafts in the region

Assume an attacker changes information exchanged through wireless
communications.

What happen if information on the value of the position of aircraft 2 is
modified and arrives wrong at some destination?

Agent_i: decision_procedure(i, state_1, state_2, …, state_n)
…

Agent_j: decision_procedure(j, state_1, state*_2, …, state_n)

Correctness of the decision procedure is compromised
Agent_i and Agent_j must have the correct value of the state of the
aircraft in the region before applying the decision procedure.

59

Consensus problem
The Consensus problem can be stated informally as:
How to make a set of distributed agents achieve agreement

on a value despite a number of threats?

Byzantine Agreement protocol

L. Lamport, R. Shostak, M. Pease, The Byzantine Generals Problem
ACM Trans. on Progr. Languages and Systems, 4(3),1982

attack

Region

1

2 3

5

4

1

2 3

5

4

Example: value of the state of aircraft 2

60

Consensus problem
Idea:

- Aircrafts send messages back and forth among themselves reporting
the position received by the other aircrafts

Region

1

2 3

5

4

1

3

5

4

5:state_2

4:state_2

3:state_2

2:state_2
attack

1:state_2

- Each aircraft final decision on the state of other aircrafts obtained by:
majority vote among the values received

Agent_1: majority(2:state_2, 3:state_2, 4:state_2, 5:state_2)
…………
Agent_5: majority(1:state_2, 3:state_2, 4:state_2, 2:state_2)

Example: value of the state of aircraft 2

61

Consensus problem
Let n be the number of agents partecipanting into the protocol and state_i be

the state of agent i. Let the number of attacks be equal to one.

Let us consider one source agent and n-1 destination agents.
Destination agents must agree on the position of the source agent.

The The protocolprotocol consistsconsists ofof differentdifferent roundsrounds

First round:
source agent i communicate its value to each other agent j

Second round:
each destination agent send the received value to the other n-2
destination agents

Each destination agent j uses the value obtained by the majority function
applied to the received values (n-1 values)

62

3 aicrafts -> no solution exists in presence of one attack

aircraft 1 does not
distinguish between
the two situations

Two different positions, one directly from the aircraft and the other relayed from
another aircraft.

2

1 33:state*_2

1:state_2

2:state_22:state_2

2

1 33:state_2

1:state_2

2:state_22:state*_2

CASE A

CASE B

Assume one must use the value
- receiveid directly from the aircraft -> case A correct, case B wrong
- relayed by another aircraft -> case A wrong, case B correct

There not exists a majoirity among values

63

Assumptions:
the system is synchronous (The absence of a message can be detected)
any two processors had direct communication across a network
the sender of a message can be identified by the receiver

Moreover, if a message does not arrive, we consider a default message equal
to “no information”.

Similarly the function majority returns “no information” if there not exists a
majoirity among values

The decision procedure uses the previous position of the aircraft, speed etc…
to make assumptions on the new position of the aircraft and to assure system
safety

What percentage of threats can the algorithm tolerate and still
correctly determine a consensus on the correct information?

Consensus problem

64

From the abstract of Castro & Liskov OSDI’99 paper:

“We believe that Byzantine fault-tolerant algorithms
will be increasingly important in the future because
malicious attacks and software errors are increasingly
common and can cause faulty nodes to exhibit
arbitrary behavior.”

Byzantine fault-tolerant (BFT) algorithms

65

The Oral messages algorithm OM(m) – where m is
the number of faulty processes

Bizantyne Generals problem (values: attack/retreat)
(loyal/traitor generals)

Consensus in distributed systems with n processes
and at most m faulty processes under Bizantyne faults
hypothesis, no assumption of the behaviour of faulty processes)

Consensus:

IC1: All correct processes decides the same value for S
IC2: The value of the decision must agree with the value sent by the

process S if he is correct.

66

OM(0)
1. S sends its value to every Di, i∈{1, ..., n-1}
2. Each Di uses the received value, or a the default value “retreat” if no value is

received
OM(m), m>0
1. S sends its value to every Di, i∈{1, ..., n-1}

2. Let vi be the value received by Di from S (vi =retreat if Di receives no value)
Di acts as S in OM(m-1) to send vi to each of the n-2 other destination
processes

3. For each i and j ≠ i, let vj be the value that Di received from Dj in step 2
(vj = retreat if Di receives no value). Di uses the value of majority(v1, ..., vn-1)

Algorithm OM(m)

OM(m) is a recursive algorithm that invokes n-1 separate executions
of OM(m-1), each of which invokes n-2 executions of O(m-2), etc..

67

OM(m) solves the Byzantine Generals Problem for (3m+1) or more generals,
in presence of at most m traitors

1 traitors, at least 4 generals
2 traitors, at least 7 generals
............

The Oral message algorithm (OM)

OM(m) requires :
m+1 rounds
message size O(nm+1) - message size grows at each round

Original Byzantine Generals Problem
Solved assigning the role of source to every general, and running the algorithms
concurrently

68

The ability of the traitor to lie makes the Byzantine Generals problem
difficult:

- No assumptions on the characteristics of faulty processors

- Conflicting values are solved taking a deterministic majority
vote on the values received at each processor (completely distributed).

restrict the ability of the traitor to lie

Agreement between multiple processes is a basic building block in fault-
tolerant distributed computing

69

Consensus in asynchronous systems

Consensus: cannot be solved deterministically in an asynchronous
distributed system that is subject even to a single crash failure
[Fisher, Lynch and Paterson 85]

due to the difficulty of determining whether a process has
actually crashed or is only very slow.

If no assumptions are made about the upper bound on how long a
message can be in transit t, nor the upper bound on the relative
rates of processors t’, then a single processor running the
consensus protocol could simply halt and delay the precedure
indefinitely.

Stopping a single process at an inopportune time can cause any
distributed protocol to fail to reach consensus

70

Sacrificing Determinism
- using randomization to design probabilistic algorithms
- substitute one of the properties that define consensus by a
similar property that is satisfied only with a certain probability

Adding Time to the Model
- using the notion of partial synchrony introduced by
Dwork, Lynch and Stockmeyer in [Dwork et al., 1988].

Techniques to circumvent the FLP impossibility
result in asynchronous systems

71

Augmenting the System Model with an Oracle

Failure detectors
- the idea is to suspect the crash of a process. Each process has

attached a failure detector module and the set of all these modules
formed the failure detector.

Wormholes
- an extension to a system model with stronger properties than the

rest of the system

The Consensus problem has been defined for a set of n known processes.

Consensus in large dynamic systems in which the number of involved
processes is unknown [Mostefaoui et al., 2005, Aguilera, 2004] is an open
area of research. Consensus is still not defined in this context.

72

Conclusions
Intrusion tolerance a new paradigm for computer system security

- intrusion tolerant protocols (I/T protocols) and intrusion tolerant systems
(I/T systems) have been developed

The main motivation has been the poor state of security in Internet

Intrusion tolerance is usually obtained by replicating the system in a set
of servers, which behave accordingly to the system specification even
if there are intrusions in up to a certain threshold of the servers

- Each server protected using the current best practices
- Diversity between the servers in such a way that they do not share the same

vulnerability, the overall system is ensured to be more thrustworthy than if it was
centralised

- small thrusted components

Workshop on Recent Advances in Intrusion-Tolerant Systems
WRAITS 2011 (In conjunction with The 41th IEEE/IFIP International
Conference on Dependable Systems and Networks - DSN 2011)
http://wraits11.di.fc.ul.pt/

