
S2RP: a Secure and Scalable Rekeying Protocol
for Wireless Sensor Networks

Gianluca Dini and Ida Maria Savino
University of Pisa

Dipartimento di Ingegneria dell'Informazione
via Diotisalvi 2, 56100 PISA Italy

{g.dini, ida.savino}@iet.unipi.it

Abstract- Nowadays, small, low-cost sensor nodes are
being widely used to build self-organizing, large-scale,
wireless networks for various applications, such as environ-
mental surveillance, health monitoring and so on. Given
its unique features, protecting a wireless sensor network
is a difficult challenge.

In this paper, we present S2RP, a secure and scalable
rekeying protocol for sensor networks. S2RP aims at
a trade-off between security and resource consumption
while it guarantees an authentic distribution of keys
that preserves both forward and backward security. The
proposed protocol is efficient in terms of communication
overhead as it reduces the number and the size of rekeying
messages. It is efficient in terms of computation overhead
as it guarantees the necessary level of confidentiality and
authenticity of rekeying messages by only using symmetric
ciphers and one-way hash functions. It follows that S2RP
meets the reduced capabilities of sensor nodes, results
scalable, and particularly attractive for large and/or highly
dynamic groups.

I. INTRODUCTION

The research community has recently acknowledged
the importance of Wireless Sensor Networks (WSNs)
and has proposed their application in several fields of
research. WSNs will enable a wide range of applications
to sense and control the physical world, such as civil and
military surveillance, health monitoring and so on [1].
A major benefit of WSNs is that they can perform in-

network processing to reduce large streams of raw data
into useful aggregated information. However, protecting
WSNs poses unique challenges. First of all, unlike tradi-
tional wired networks, an adversary with a simple radio
receiver/transmitter can easily eavesdrop as well as in-
ject/modify packets in a WSN. Second, in order to make
WSN economically viable, sensor nodes are limited in
their energy, computation, storage, and communication
capabilities. Furthermore, sensor nodes typically lack
adequate support to tamper-resistance. Therefore, the fact

that WSN can be deployed over a large, unattended,
possibly hostile area exposes each individual sensor node
to the risk of being compromised.

In a WSN, sensor nodes cooperate towards a given
application according to the group communication
model [2]. According to this model, a sensor node
becomes a new member of the group by explicitly
joining it. As a member of the group, the sensor node
may broadcast messages to the other members. Later
on, the node may voluntarily leave the group, or, if
compromised, may be forced to.

In order to protect group communication, group mem-
bers share a group-key. They use this key to encrypt
messages broadcast within the group so that anyone
that is not part of the group can neither access nor
inject/modify messages. When a sensor node joins the
group, it must not be able to decipher previous messages
encrypted with an old key even though it has recorded
them (backward security). When a sensor node leaves,
or is forced to leave, the group, the sensor node must
be prevented from accessing the group communication
(forward security).

In this model, backward and forward security are pro-
vided via rekeying [3]. When a member joins or leaves
the group, the current group-key must be revoked and a
new one must be distributed in order to guarantee both
backward and forward security. This reactive approach
has the advantage that a new node can immediately join
the group and a compromised member can be promptly
forced to leave as soon as it is discovered. However,
the implementation of a reactive approach in a WSN
poses two severe challenges. First, upon receiving new
keying material, every sensor node must be able to
immediately and efficiently verify its authenticity. Unfor-
tunately, techniques based on public key cryptography,
e.g., digital signatures, that are customary used to achieve
broadcast authentication in traditional wired networks,

1-4244-0507-6/06/$20.00 ©2006 IEEE 457

cannot be used. Second, reactive rekeying may incur in a
high communication overhead, especially in large and/or
dynamic groups. Therefore, due to the severe resource
limitations of sensor nodes, the communication overhead
of the rekeying protocol has to be kept low.

In this paper we take up these challenges and present
S2RP, a Secure and Scalable Rekeying Protocol con-
ceived for large, highly dynamic WSNs. The protocol
is secure because it fulfills both the forward and the
backward security requirements. The protocol is scalable
because it requires 0 (log n) messages to revoke the
current group-key and distribute a new one, where n is
the number of sensor nodes in the WSN. Furthermore,
the protocol immediately authenticates new group-keys
by only means of symmetric ciphers and one-way hash
functions which are several orders of magnitude more
efficient than public-key cryptography.
S2RP has the merit of taking the problem of key

revocation in WSN to the same level of importance as
key distribution. The importance of key revocation stems
from the observation that, if the cryptographic algorithms
do not expose the secret keys, then secret keys can
only be compromised by compromising sensor nodes. It
follows that the ability to revoke keys translates into the
ability to remove compromised nodes [4]. Actually, by
revoking all keys of a compromised node, it is possible to
remove the presence of that node from the WSN. Despite
its importance, the problem of key revocation in WSN
has received relatively little attention. Key revocation of
pairwise keys has been studied in [5], [6] whereas key
revocation of group-keys has been studied in [7].
S2RP follows the centralized approach and has the

additional merit of improving on the centralized schemes
proposed so far [7], [5]. In a centralized revocation
scheme, a Key Management Service has the task of
revoking current keying material and redistributing new
ones to all sensor nodes but the one that leaves, or is
forced to leave, the group. In the centralized schemes
proposed so far, the Key Management Service unicasts
rekeying messages to sensor nodes that remain in the
group. This requires 0 (n) messages. As it is shown
in the paper, S2RP accomplishes the same task with
o (log n) messages.
The protocol levers on two basic mechanisms: Logical

Key Hierarchy and key-chains. Logical Key Hierarchy
(LKH) is a technique for secure and scalable group
rekeying that has been originally proposed for conven-
tional wired networks and that allows us to achieve a
group rekeying protocol where the number of messages
is a logarithmic function of the network size [8], [9],

[10]. Key-chain is an authentication mechanism based
on the Lamport's one-time passwords [11] and that
has been already profitably employed for efficient key
authentication in wireless sensor networks [7]. Although,
these mechanisms are not new, another merit of this work
consists in proposing their integration. Actually, we
prove that compounding them compounds their strengths
and, therefore, their integration is conducive to improve
scalability and security of group rekeying in WSNs.
We originally proposed this integration in a preliminary
work [12].

The paper is organized as follows. Section II intro-
duces the system architecture. Section III illustrates the
key-chain mechanism for key authentication. Section IV
gives an overview of S2RP and explains how it deals
with the group operations join and leave. Sections V
and VI give more details about the operational phases
of the protocol. Section VII discusses the types of
messages necessary for rekeying. Section VIII presents
a performance analysis based on an early prototype and,
finally, in Section IX we expose our concluding remarks.

II. SYSTEM ARCHITECTURE

We consider a WSN in which sensor nodes cooperate
towards a given application according to the group com-
munication model. In this model, a sensor node becomes
a new member of the group by explicitly joining it. As
a member of the group, the sensor node may broadcast
messages to the other members. Later on, a node may
leave the group wither voluntarily, when it terminates its
mission, or be forced to, if compromised. After leaving
a group, a node cannot send messages to, or receive
messages from, that group, or join it again.
Members of a group can be further sub-grouped into

clusters. A sensor node becomes member of a cluster
when the node joins the group and remains member
of that cluster as long as the node is member of the
group. Sensor nodes may be clustered according various
criteria. For example, clusters may be defined on geo-
graphical basis. The area over which the sensor nodes
are distributed can be divided into grids. Sensor nodes
that happen to be in the same grid are "close" to one
another and belong to the same cluster. As a further
example, sensor nodes can be clustered according to
their functionality, e.g., their sensing function. It follows
that sensor nodes that sense the same physical quantity
(e.g., light, humidity, vibrations) are included in the same
cluster.

In order to protect group communication from both a
passive and an active external adversary, group members

458

share a group-key they use to encrypt messages within
the group. Similarly, sensor nodes in the same cluster
share a cluster-key to encrypt messages within the clus-
ter. In this model, forward and backward security should
be provided via rekeying, in which both the group-
key and the cluster-keys are changed and distributed
whenever a sensor node joins or leaves the network.

The group of sensor nodes is managed by a Group
Controller (GC) that is composed of three main com-
ponents: a Group Membership Service (GMS), a Key
Management Service (KMS), and an Intrusion Detection
System (IDS). The GMS component maintains the mem-
bership of the group by keeping track of sensor nodes
that join and leave the group. A sensor node wishing to
cooperate towards the WSN application joins the group
as a member by invoking the join operation. Later on,
the sensor node may decide to terminate its collaboration
and explicitly leave the group by invoking the leave
operation.
As individual sensor nodes are exposed to attackers,

the IDS component probes/monitors network activities
to uncover compromised nodes. Upon detecting a com-
promised sensor node, IDS forces the sensor to leave the
group by invoking the leave operation and specifying the
sensor node identifier as argument.
Whenever a sensor node joins, leaves, or is forced

to leave the group, the group-key has to be renewed in
order to guarantee the backward and forward security
requirements. KMS is the component that is responsible
to perform such a rekeying task. Upon handling a change
in the group membership, GMS activates a rekeying by
invoking the rekeying operation of KMS and specifying
the kind of event, join or leave, that gave rise to the
membership change. However, KMS gives also support
to a periodic rekeying aimed at reducing the amount of
encrypted material available to an adversary.

In a centralized approach, GC can be implemented by
a more powerful computing node than sensor nodes. GC
may well be a computing node such as a PC, a worksta-
tion, or a server, with plentiful of computational, storage,
communication and power resources. Furthermore, we
reasonably assume that GC is either tamper-resistant or
physically protected and thus we exclude that it can be
compromised by an external adversary. In the rest of the
paper we detail the KMS component.

III. KEY-CHAIN: A MECHANISM FOR
AUTHENTICATION

S2RP achieves the authentication by employing one-
way hash functions (OWHFs). A OWEF H is an

hash function with the following additional properties:
(a) given an input m, it is easy to compute H(Tn)
(easy computation); (b) given an output y for which the
corresponding input is not known, it is difficult to find a
preimage m such that y = H(m) (preimage resistance);
and (c) given an input m it is computationally infeasible
to find a second preimage rn such that H(n)= H(rn)
(2nd-preimage resistance) [13].

CREATING

H H H H H H

|K5N K(f)| K(f)|*-| -| K(2)| K(1)| K(°)

REVEALING

Fig. 1. Key-chain

We consider a sender S that broadcasts symmetric
keys and a receiver R that must be able to verify the
authenticity of the received keys. S uses the OWHF H for
authentication purposes as follows. S computes a chain
of symmetric keys so that each element in the key-chain
is the image of the next one under H [11]. In detail,
S randomly chooses a seed s and then builds the key-
chain as follows: s, H(s), H2(s), ..., HN(s), where If(s)
corresponds to applying i times H on s and HO°(s) = s.
We define K() = HN- i(s). Therefore, K(N) = H0(s) = s.
So, the key-chain generated by applying H on the seed
K(N) is defined as follows:

Chain(K f)NI= H){K(i) K(i) = HN-(K(N), <i NJ
Properties (a)-(c) of OWEIF guarantee that anybody

who knows the key K°' can compute all the previous
keys K(), 0 < i < j, but cannot compute any of the later
keys K(), j + 1 < i < N.
S reveals the chain elements in reverse order with

respect to creation. Assume that S reveals a given key K(i)
of the chain to R through some predefined authenticated
channel. Assume now that, later, S reveals K°', i < j <
N, to R over an insecure channel without additional
communication overhead. R can verify the authenticity
of K°', i.e., it comes from S, by applying j -i times
H to K°' and checking that the result is equal to K().
That is, K(i) = H- (K')). It must be noticed that, if S
initially transfers the chain-head K(°) to R, then R can
authenticate all keys in the key-chain.

459

We define the current-key,K(c"r), the last-revealed key
that belongs to the chain. That is, K(c1r) corresponds to
K(i) if S has already revealed K(i) but K("') is still secret.
Moreover, we define the next-key, and denote it by K(nxt),
as the next key to be revealed. Of course, if K(c1r) = K()
then K(nxt) = K(+)

IV. OVERVIEW OF S2RP

Every sensor node has a private-key, a symmetric key
that it secretly shares with KMS. KMS uses this key to
securely unicast rekeying material to the sensor node.
We denote by KSX the sensor-specific key of node s.

-qChain (K(N,) N He)
Io co,°

XChain(K 2 2 H,)
I EI I 1

C~hain(K 6 6, N,61 He)

-'A
iI Ksh

Fig. 2. Eviction-tree with m=2 and h=3

In order to preserve the forward secrecy, S2RP
maintains a hierarchical structure of symmetric keys,
called eviction-tree. The internal nodes are indexed in
the Breadth-First Search fashion, as shown in Figure 2,
with the root as node eo. Tree nodes are associated with
encryption keys as follows. KMS associates the private-
key of every group member with a leaf of the eviction-
tree, while each internal node ej is associated with the

(N,.key-chain Chain(Ke&j Nej: He).
Let Kecj be the current-key of Chain(Kej , Nej: He).

We define Keys(c"r) the set of the current-keys KIc"r) of
every internal nodes that KMS stores. Every sensor node
sx stores a subset of Keys(cr), KeySet(sx), defined as
follows. Let Path(sx) be the set of internal nodes lying
on the path from the root to the leaf associated with sx.
So, the key-set KeySet(sx) is composed of the current-
keys associated with the internal nodes in Path(sx):

KeySet(sx) Kc- ej E Path(sx)}
At any time, the key-set in each group member is

composed of h keys, where h is the path length. In the
case of balanced tree h is h = [logn(n)], where n is the

network size and m is the tree ariety. In particular, the
current-key associated with the tree root, KA-r), belongs
to the key-set of every group member.

This key hierarchy allows us to define the following
form of clustering. Let ej be an internal node and let
L(ej) be the set of leaves belonging to the subtree rooted
at ej. We define a cluster associated to ej, and denote
it by Cluj, as the set of sensor nodes whose keys are
associated to leaves in L(ej). For example, with reference
to Figure 2, the set of nodes {t.a, eb, eC, ed} forms the
cluster Cluj. The clusters are at most hi Tk
Tn -Tn while every group member could take part to at
most h-1 clusters. It must be noticed that the current key
Kc-r) associated with node ej is shared only by members
of cluster Cluj.

The key server KMS uses the eviction-tree to guarantee
forward security as follows. When a sensor node s,
leaves the group communication, all keys in KeySet(sl)
are compromised and must be renewed. Consequently,
KMS updates Keys(cur) as follows. For each internal node
ej in Path(sl), KMS replaces the current-key Kc-r) with

the next-key K(ncxf) in the key-chain Chain(& Nej He)
Then, KMS broadcasts K(ncxt) to nodes having ej in their
associated path, except the leaving node sl. In Sec-
tion VIII we show that KMS accomplishes this task by
means of 0 (log n) messages. It follows that after its
leaving, sl holds neither the current group-key nor the
current cluster-keys.

The eviction-tree is not suitable to preserve the back-
ward security. Actually, when a new sensor node joins
the group, it is associated with a leaf of the eviction-
tree and receives the current-keys of the internal nodes
belonging to its path. However, as soon as the new
member receives these keys, it becomes able to calculate
all the previous keys in the corresponding key-chains by
repeatedly applying He

In order to preserve the backward secrecy, KMS de-
fines an additional key, Kj, that we call join-key. This
symmetric key is shared by all group members and it is
securely renewed when a new member joins the group.
The group members calculate the group-key by mixing

the join-key Kj and the current-key associated with the
tree root Kecor). Backward security is now guaranteed be-
cause the new member does not know the previous join-
keys, and thus is not able to recover the corresponding
previous group-keys. Similarly the cluster-keys can be
obtained by mixing the join-key and the current-key of
internal nodes to preserve both the forward and backward
secrecy. For instance, the cluster-key of cluster Cluj is

460

obtained by mixing Kj and KIcur)
When a new member joins the group, the join-key

stored by all members must be securely renewed. In
a simple approach, KMS could generate a fresh join-
key and unicasts it to all members encrypting with their
private-keys. It follows that this solution requires 0 (n)
messages. An alternative, more efficient approach lets
each member locally calculate the new Kj so reducing
communication costs and saving energy. More in detail,
KMS broadcasts the command of renewing the join-key
to the members already in the group. The group members
verify the authenticity of command and then apply a
OWUF on the current join-key to obtain the new one.
Thus, KMS needs only to securely unicast the new join-
key to the joining member.

In the latter approach every group member has to be
sure of the authenticity of the renewing command, i.e., it
actually comes from KMS. Once again, the proof of au-
thentication is based on the key-chain technique. To this
purpose, KMS builds a key-chain Chain(K)cN),N Hc)
where K$c) corresponds to the l-th command of renewing
Kj.

V. THE INITIALIZATION PHASE

In the initialization phase, KMS initializes sensor
nodes that form the initial membership. Such initializa-
tion takes place via off-line methods. KMS assigns an
identifier and a private-key to each group member.

The private-key for sensor node Sa is generated as
follows: Ksa = f(MK, Sa), where f is a secure pseudo-
random function and MK is a master key known only
by KMS. In this scheme KMS needs only to keep MK
in storage. When KMS needs to communicate with Sa,
it computes K.,,.
As mentioned in Section IV, KMS precomputes the

(N,3key-chain Chain(K(, Nej , He) for each internal node
ej of the eviction-tree. The length of a key-chain
could depend on the internal node with which it is
associated. Let level (ej) be the level of the internal
node ej in the eviction-tree. That is, level (e) =

[log (j(n -1) + n)]. If level(ej) < level (ei), the
subtree rooted at ej is composed of more leaves than
the ei's subtree. KMS reveals an element in the key-
chain associated with ei whenever a leaf that belongs
to its subtree is removed. For this reason, the chains
associated with lower-level internal nodes are consumed
more quickly. Therefore, usually, the chain associated
with an internal node is longer than the ones of its

1H, and He could be the same OWHF

children. That is, if ej and ei are two internal nodes and
ei is a child (descendant) of ej, then level (ej) < level (ei)
and Nej > Ne,.

During the initialization phase, each group member
securely receives the chain-heads of the nodes belonging
to its path. Hence, Keys(cr) initially contains the chain-
heads associated with the internal nodes.
As an example, let us consider a given node Sa

With reference to Figure 2, KMS associates K., the
private-key of sensor node Sa, with the leftmost leaf of
the eviction-tree. It follows that Path(sa) = {eo,e1,e3}
and thus the key-set in Sa is composed of the chain-
heads associated with the internal nodes in Path(sa), i.e.
KeySet(sa) = {KK(O)KK() K()}

Furthermore, KMS defines the join-key, Kj, that is ran-
domly chosen and generates a chain of command-keys
Chain(K$(Nc), NC, Hc). Besides, KMS securely distributes
Kj and Kc to every group members.

VI. THE GROUP COMMUNICATION PHASE

During the group communication phase the group
membership could change and KMS must guarantee the
forward and backward security by means of rekeying.
Moreover, KMS may periodically refresh both the group-
key and cluster-keys as needed.

A. Secure group communications

At any time, a group member s, stores the join-key
and its KeySet(s,). The group members use these keys to
locally generate the group-key Kgrp and the cluster-keys
KC,i, as follows.

The group-key. Every group member stores the join-
key, Kj, and the current-key associated with the tree root
eo, K(cor). To preserve only the forward security, the group
members use K(cor) as group-key, i.e., Kgrp = K(cor). In fact
this key is renewed and efficiently transmitted to group
members whenever a node leaves, or is forced to leave,
the group communication.

To preserve both the forward and backward security,
the group members locally generate the group-key by
mixing Kj and K(cor). That is, Kgp = M(Kj, K(co1r)) where
M is a mixing function. Backward security is guaranteed
because new members do not know the previous values
of join-keys, and thus are not able to recalculate the
corresponding previous group-keys.

The cluster-keys. The current-keys Kec,"r) that are as-
sociated with the internal nodes (except eo), are shared
only by members of cluster Cluj.

Hence, the members use these keys to construct the
cluster-keys similarly to the group-key. To preserve only

461

the forward security, the cluster members use the K(c"r)
as the cluster-key K,,i,. To achieve also the backward
security, a cluster member mixes Kj and Kec-) to locally
generate the cluster-key KCiL,, as KCli= M(Kj, Kc"r)),
where M is the mixing function.

B. Managing group membership. a member leaves the
group

When a member s, leaves, or is forced to leave, the
group, KMS must prevent s, from accessing future com-
munication. The keys that sl holds become compromised
and KMS has to renew the keys belonging to KeySet(sl)
to preserve the forward security.

First, KMS identifies the compromised internal nodes
that belong to Path(sl). Then, KMS updates the eviction-
tree by removing the leaf associated with K81. For each
compromised internal node ej and for each child of
its, KMS generates a rekeying message. If the ej's
child is a leaf, the message contains Ken"') encrypted
with the private-key of the correspondent group member.
If the ej's child is an internal node ec and Kec-) is
not compromised, the rekeying message contains Ken"')
encrypted with Kec-). If K"Cr) is compromised, K(n/') is
encrypted with K."). After this procedure, Keys(cur) is
updated as follows: for each compromised node e, K"Cr)
is replaced by Ken".) As the private-key held by sl is not
used to encrypt any new key, and all its known current-
keys are changed, s, is no longer able to access the group
messages.

With reference to Figure 2 , let us assume that the
sensor node Sd leaves the group. It follows that keys Kcor),
K(,cur) and K(c-1) are considered compromised and KMS has
to renew each of them. The new keys are respectively
K(cxt) K(xt) and K(nlxt) so that K(c-r) = He(K(nXt)). Then,
KMS generates and broadcasts the following rekeying
messages:

M1. KM SC:EK (Ks-t))
M2. KMS 74 sc: EKw,t, (Ke'jj))
M3. KMS 74E {Sa, Sb}: EK(c11) (Kenjj))
M4. KMS 74 {Sac 5b: sC}EK(Ex) (Kb'))
M5. KMS 74 {Se: Sf:SgESh} EK(c1x) (Kb'))

where 74 denotes the broadcast communication operator.
In the case of balanced m-ary tree, KMS needs to

broadcast m [Iogn(n)] -1 messages (see Section VIII-
B).
Upon receiving the re-keying messages, the group

members decrypt them with appropriate keys in order
to get the new keys. Then, the group members can
immediately verify the authenticity of the new keys by

applying the OWHF He. With reference to Figure 2, let
us consider s5, for example. Upon receiving messages
M1, M2, and M4, sc performs the following actions.
Initially, sc decrypts M1 with its private-key Ks, and
checks that K.",) = He(Ken4x)). Then, sc decrypts M2
with K4X/) and checks that K(') = He(K'nxt)). Finally, sc
decrypts M4 with K.,jj) and checks that K(ecor) = He (Keo))

C. Managing group membership: a new member joins
the group

In order to preserve the backward security, all group
members share the join-key Kj. This symmetric key is
securely renewed whenever a new node joins the group
in such a way it cannot obtain the previous ones.
When a new node Sn joins the group, KMS broadcasts

the command of renewing Kj. Let us suppose that, when
Sn joins the group, all members that are already in
the group store a copy of K(c) and that the message
conveying the command carries K(C 1). It follows that
KVcur K? and Kv< <+1). Upon receiving the
new key Kv'Cxt, the group members can immediately
verify the authenticity of the command. If the check is
successful, every member locally calculates the new join-
key by simply applying Hj to the current join-key, i.e.,
Kj <- Hj (Kj). Moreover, the members already in the
group refresh their current command-key with the newly
received value KC . i.e., KC n< t. Contextually, KS
needs only to unicast KV(Ct) to sn and the new value of
the join-key encrypted with K,,.

Furthermore, KMS needs to update the eviction-tree
creating a new leaf associated with K,,. Then, KMS
securely unicasts KeySet(s,) to Sn . With reference to
Figure 2 , assume that KMS inserts the leaf associated
with Sn as a child of e3. Then, KMS unicasts Sn the
messages containing respectively K(cor), K(cqr), and K(c3r).
These keys are encrypted with the private-key of the
joining node, K,.

D. Periodic key refreshing

Periodically KMS refreshes both group-key and
cluster-keys. So doing, KMS makes cryptanalysis less
attractive because the keys will be invalidated regularly
and thus the material encrypted with those keys that an
adversary can collect is limited.

In our protocol, the group-key Kgrp and cluster-keys
Kcli are function of the join-key Kj. So, when a
node renews Kj, automatically updates Kgrp and KClui.
Therefore, in order to periodically refresh Kgrp and Kclui,
KMS needs only to periodically broadcast K(C t), i.e., the

462

I
TABLE I

CLASSIFICATION OF MESSAGES.

command to refresh Kj. Upon receiving a message con-
veying K(C) every group member verifies its authenticity
by ascertaining that iv(cr) = H,(Kv(nx), sets v(Cx) as the
new current command-key, and, finally, computes the
new values for Kj,Kgrp and Kclu,

E. Key Reconfiguration

The command key-chain and the key-chain associated
with any internal node ei have a limited length. When
all keys belonging to a key-chain have been revealed,
the key-chain has run out, and KMS has to reconfigure it
as follows. KMS builds a new key-chain as specified in
Section III. Then, KMS takes different actions according
to whether the key-chain to be reconfigured is the
command key-chain or is a key-chain in the eviction-
tree. In the former case, KMS unicasts the chain-head
K(c) to each sensor node that is member of the group.
In the latter case, assuming it is the key-chain associated
with node sj that has to be reconfigured, KMS unicasts
Ke°) to all sensor nodes rooted at e.

VII. CLASSIFICATION OF REKEYING MESSAGES

In order to guarantee the forward and backward secu-
rity, KMS needs five types of rekeying messages. Table I
shows them.
KMS broadcasts messages typed TEb when a sensor

node, e.g. sl, leaves, or is forced to leave, the group
communication. Let ej be a node belonging to Path(s1)
and K,_3 be the next-key associated with ej. KMS has to
broadcast KC-) by means of m messages typed TEb, one
for each child of ej. Let ec be one of these children and
Kel) be the key associated with it. The message typed
TEb contains Kej encrypted with the key Ke. in order to
guarantee the confidentiality. Since the group members
can verify the authenticity by applying the OWHF He,
KMS sends only the encrypted key without appending

a digital signature for guaranteeing authenticity. The
message contains the indexes j and c corresponding to
the internal nodes ej and ec respectively. Hence, the
length of index j, or c, limits the number of internal
nodes so that the eviction-tree is composed of at most
2 i internal nodes, where 11.11 is the bit-length. The
indexes i and I correspond to the position of the keys
in the key-chains associated with the internal nodes ej
and ec respectively. Consequently, the indexes limit the
length of the corresponding key-chains so that Nej <
2 i and Ne, < 2 1 .
A message of type TEU contains the i-th key of

(N,)Chain(Kej ' , Nej,He). KMS unicasts this message to
sx when sx joins the group communication or looses
messages of type TEb. Moreover, when all Nej keys
belonging to ej chain have been revealed, KMS needs to
unicast this type of message (i = 0). Before unicasting
this message to sx, KMS must verify that ej is included
in Path(sx). The authenticity of messages typed TEU is
guaranteed by encrypting the message with the private
key and using an MDC h. When KMS unicasts a message
containing a key K to sx, he computes the hash value of
K, appends it to the key, and encrypts the pair (K h(K))
by using the private-key Kx. The receiver sx decrypts the
message with its private-key and separates the recovered
key K from the recovered hash H. Then sx computes
the hash function h on K and compares it with H. If
these quantities agree, K is accepted as being authentic.
The encryption protects the appended hash so that it is
infeasible for an attacker without Ksx to alter the message
without disrupting the correspondence between K and its
hash value.
KMS broadcasts the group members the message

of type TCb to command renewing the join-key both
periodically and whenever a new member joins the
group. This message contains the key K(? belonging to

Chain(Kc , NC, H,). The index I specifies the position
of the key in the key-chain and it limits the length of
key-chain. That is, NC < 2 I where 1I1I is the bit-length
of index 1. KMS neither encrypts the command-key nor
appends a digital signature as a proof of its authenticity.
KMS unicasts sx the message typed TcU when sx joins

the group communication or looses messages oftype TCb.
Moreover, when all command-keys have been revealed,
KMS needs to unicast this type of message to all group
members (I = 0). The authenticity of this message is
guaranteed by encrypting the message with the private
key and using an MDC h as well as in the case of type
TE,

463

Finally, KMS unicasts the new joining member s, the
message typed TJU This message contains the current-
value of join-key Kj. The authenticity of this message
is guaranteed by using the private key and the MDC h
as well as in the case of type TEU-

VIII. PERFORMANCE EVALUATION

In this section we present experimental results and an-
alyze storage, communication, and computing overhead
of S2RP. We have implemented an early prototype of
the S2RP protocol for a WSN composed of sensor nodes
of the Tmote Sky class [14]. These sensor nodes are
powered with two AA batteries and equipped with a 16-
bit 8MHz MSP430 microcontroller, 48 Kbytes of ROM,
10 Kbytes of RAM, and IEEE 802.15.4 radio interface.
We run TinyOS as operating system [15].
Our implementation, referred to as MoteCrypt, uses

SkipJack [16] or RC5 [17] as symmetric cipher, and
SHA-1 [18] as hash function. We borrowed the TinySec
implementation of these algorithms [19]. However, as for
the moment TinySec does not support Tmote Sky, we
had to port the machine-dependent parts of such imple-
mentations onto our platform. Although the porting was
carried out in the NesC language for fast prototyping,
the initial resulting implementation was satisfactory.

The structure of messages in MoteCrypt is based
on the packet format of TinyOS (Table III) The fields
Dst addr and Grp correspond to the destination address
and the group identifier respectively. Field Type specifies
the appropriate handler function to extract and interpret
the message on the receiver. Field Other is reserved for
TinyOs, while Pld len is the length of payload, Cnt
and Data. The field Data contains the cryptographic
key that KMS unicasts to a specific-sensor node s, or
broadcasts to group members. Cnt contains the index
specifying the position of the key in the chain and in
some cases other information used to extract the key.
For example, in message of type TEb, Cnt contains the
position of key in the key-chain, the index of the internal
node associated with the key, and the indexes that
locate the key used for encryption. Finally, the rekeying
message contains Cyclic Redundancy Code (CRC) that
is used by receivers to detect transmission errors.

A. Computing overhead
Table II reports the total amount of time (in mil-

liseconds) employed by each sensor node to process
a rekeying message, verify the authenticity of a re-
ceived key, and to refresh the corresponding group-
key or cluster-key. The table highlights the three main

Type: TEb TEU Tcb Tcu TJU
RC5 3.85 5.12 - 5.12 5.12
SHA-1 3.91 3.91 2 x 3.91 3.91 3.91
Preproc. 6.45 6.45 h x 6.45 - h x 6.45

Total(h=3) 14.81 15.76 26.97 9.60 28.15

Type: TEb TEU TCb TcU TJU
SkipJack 1.46 1.93 - 1.93 1.93
SHA-1 3.91 3.91 2 x 3.91 3.91 3.91
Preproc. 1.22 1.22 h x 1.22 - h x 1.22

Total(h=3) 7.24 7.47 11.55 5.88 9.53

TABLE II
COMPUTATIONAL COST TO PROCESS A REKEYING MESSAGE (IN

MILLISECONDS).

operations contributing to the computation: decrypting
the message, verifying the authenticity of the received
key, and installing the group-key and/or cluster-keys. In
particular, to verify the authenticity of a key each sensor
node applies the hash-function. In the case of SHA-
1 this requires 3.91 ms. This is an improvement with
respect to LKH, that uses the digital signature for key
authentication. Furthermore, depending on the cipher,
installing a new key requires a preprocessing that makes
decryption/encryption faster. This preprocessing requires
6.45 ms with RC5 and 1.22 ms with SkipJack.

As shown in the table, upon receiving a message
of type TEU and TEb, each group member decrypts the
message and calculates the hash value to verify the
authenticity. Then it calculates the corresponding com-
munication key. That is, if the received key corresponds
to the tree root (j = 0), the group member calculates
and preprocesses the new group-key Kgrp, otherwise it
calculates and preprocesses the corresponding cluster-
key K,i11j. When a member receives a message of type
TCb, it verifies the command authenticity and renews
the join-key by means of the hash function. Then, it
changes both the group-key and the cluster-keys. When
a member receives a message of type TcU, it has only to
decrypt the messages and to verify the key authenticity
without renewing the group-key and cluster-keys. When
a member receives a message of type TJ,, it decrypts the
message and verifies its authenticity. Then, it updates
its stored join-key and preprocesses both the renewed
group-key and the cluster-keys.

464

B. Communication overhead

In this section, we analyze communication overhead of
S2RP from two points of view: the number of messages
for key management and the size (in bytes) of rekeying
messages.
S2RP increases scalability by reducing the number of

messages to revoke the group-key and cluster-keys when
a sensor node leaves, or is forced to leave, the group
communication. As discussed in the Introduction, so far
key revocation has required a number of messages that
is 0 (n) and thus it is not scalable in a large scale WSN.
In contrast, in S2RP the number of rekeying messages
depends on the path length h and the tree ariety m.
Actually, for each node on the path (h nodes), we need
a rekeying message of each one of the node's child (im
children). The exception is made for the internal node
at the h -1 level. In this case, KMS has to transmit
m- 1 unicast messages, one for each leaf, except the
one associated the leaving node. As h = [logn(n)], it
follows that the number of messages is m [logn (n)] -1.

In order to preserve the backward security, our pro-
posed approach requires only to broadcast the message
that conveys the command-key. Furthermore, KMS uni-
casts h + 2 keys to the new member that are respectively
the renewed join-key, the command-key and the key-set
of the receiver (h keys).

Rekeying messages are broadcast. It follows that
S2RP would greatly benefit from an underlying efficient
and scalable broadcast protocol. Notwithstanding, S2RP
itself gives a fundamental contribution to scalability as
it reduces the number of rekeying messages from 0 (n)
to 0 (log(n)).

dst Grp Type Pld Other Cnt Data CRCaddrle

2 1 1 1 3 2 0-27 2

Type: TEb TEU Tcb TCU TJU
Header 10 10 10 10 10
Cnt 2-4 2 2 2 2
Data 10 20 10 20 20

Tot.(bytes) 22-24 32 22 32 32

TABLE III
FORMAT OF REKEYING MESSAGES AND COMMUNICATION

OVERHEAD PER PACKET(IN BYTES).

Table III shows the size of rekeying packet types.
It must be noticed that the field Data in messages of

type TEb or Tcb contains only the key without a digital
signature or a MDC to guarantee the authenticity. Hence,
the communication overhead per packet is reduced with
respect to LKHI. Furthermore, in order to achieve seman-
tic security we must use a fresh Initialization Vector (IV)
for each encryption that is sent in the same packet with
the encrypted data. In order to reduce the communication
overhead introduced by IV, we reuse some of fields in
the packet header [19]. In particular, IV is given by the
concatenation of Dst addr, Grp, Type, Pld len, Cnt,
and padd, where padd is one byte of the Other field.

C. Storage overhead
Although memory space is a very scarce resource for

the current generation of sensor nodes, storage is not
an issue in our scheme. In fact, a sensor node s, needs
to store the private-key, h keys belonging to its key-
set KeySet(s,), the join-key, and the current command-
key. Furthermore, it needs to store one group-key and
h -1 cluster-keys. In order to save storage, a sensor
node could avoid storing the group-key and cluster-keys
and build them as needed by mixing the join-key with
a key of its key-set. However, so doing, the node would
incur every time in the cost of installing a new key (see
Section VIII-A). In the case of binary eviction-tree and
a WSN composed of 1024 sensor nodes, the path length
h is 10 and every sensor node has to store 23 keys.
Assuming a key size of 10 bytes, keys totally require
230 bytes of storage.
As to storage overhead at KMS, it stores one master

key MK to generate n private-keys. In fact, KMS com-
putes the private-key KO. as follows: KsX = f (MK, Sa),
where f is a secure pseudo-random function and sa is
the node identifier.

Furthermore, KMS needs to store a key-chain for each
internal node. To avoid storing the entire key-chain, we
can exploit the optimization algorithm by Coppersmith
and Jakobsson [20] to trade storage and computation
cost. The algorithm requires log2 (N) memory cells to
store a chain composed of N keys. Thus, if we assume
for simplicity that every node internal node is associated
with a fixed-length chain of N keys, KMS has to store
(m - X log2 N) keys. With reference to the previous
example, KMS has to store only 8 keys for each chain
of 256 keys and thus 8184 keys for the whole entire
eviction-tree. For a key of 10 bytes, KMS requires about
80Kbytes to store all the keys associate with the eviction
tree.

Finally, the memory requirement for the code storage
is 40932 bytes and 39788 bytes by using SkipJack or

465

RC5 as encryption algorithm respectively. The code size
includes the operating system TinyOS, the cryptographic
primitive SkipJack or RC5, and the hash function SHA-
1. Moreover, the memory requirement for static data
is 2176 and 2932 bytes by using SkipJack or RC5 as
encryption algorithm respectively.

IX. CONCLUSIONS

With reference to group communication in WSNs, we
have presented S2RP a scalable and secure rekeying
protocol that allows every member to locally authenticate
a key distributed over insecure broadcast channels. The
proposed solution has the following merits.

. The protocol guarantees the forward and backward
security when the group membership changes.

. The protocol has a reduced communication over-
head in terms of the number of messages necessary
to distribute new keys. In particular, when a sensor
node leaves, or is forced to leave, the group, the
number of messages necessary to distribute a key
is a logarithmic function of network size.

. The protocol has reduced computational overhead
as it uses only one-way hash functions and sym-
metric ciphers to guarantee confidentiality and au-
thenticity of the rekeying messages.

The reduced communication and computational overhead
meets the limited capabilities of the sensor nodes, im-
proves the protocol scalability and gives rise to energy
savings that increase the network lifetime.

ACKNOWLEDGEMENTS

This work has been supported by the Commission
of the European Communities under Sixth Framework
Programme Project IST-004536 "Reconfigurable Ubiq-
uitous Networked Embedded Systems"(RUNES). We are
grateful to the students I. S. La Porta and M. Dell'Unto
who participated in coding the prototype.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
"Wireless sensor networks: a survey," Computer Networks,
vol. 38, no. 4, pp. 293-422, March 2002.

[2] B. Sinopoli, C. Sharp, L. S. S. Schaffert, and S. S. Sastry,
"Distributed Control Applications Within Sensor Networks,"
Proceedings ofthe IEEE, vol. 91, no. 8, pp. 1235-1246, August
2003.

[3] D. M. Wallner, E. G. Harder, and R. C. Agee, "Key management
for multicast: issues and architecture," IETF, RFC 2627, 1999.

[4] H. Chan, V. Gligor, A. Perrig, and G. Muralidharan, ""on the
distribution and revocation of cryptographic keys in sensor
networks"," IEEE Transactions on Dependable and Secure
Computing, vol. 2, no. 3, pp. 233-247, July-September 2005.

[5] L. Eschenauer and V. D. Gligor, "A key-management scheme
for distributed sensor networks," in 10th ACM Conference on
Computer and Communication Security (CCS'03), Washington
D.C., USA, October 27-30 2003, pp. 41-57.

[6] H. Chan, A. Perrig, and D. Song, "Random key predistribution
schemes for sensor networks," in IEEE Symposium on Security
and Privacy (SP'03), 11-14 May 2003, pp. 197-213.

[7] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar,
"SPINS: Security suite for sensor networks," in Proceedings
of the Seventh Annual International Conference on Mobile
Computing and Networking (MOBICOM-01). New York: ACM
Press, July 16-21 2001, pp. 189-199.

[8] S. Rafaeli and D. Hutchison, "A Survey of Key Management
for Secure Group Communication," ACM Computing Surveys,
vol. 35, no. 3, pp. 309-329, September 2003.

[9] C. K. Wong, M. G. Gouda, and S. S. Lam, "Secure Group
Communications using Key Graphs," IEEE/ACM Transactions
on Networking, vol. 8, no. 1, pp. 16-30, February 2000.

[10] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner,
"The VersaKey Framework: Versatile Group Key Management,"
IEEE Journal on Selected Areas of Communications (Special
Issue on Middleware), vol. 17, no. 9, pp. 1614-1631, August
1999.

[11] L. Lamport, "Password authentication with insecure commu-
nication," Communications of the ACM, vol. 24, no. 11, pp.
770-772, November 1981.

[12] G. Dini and I. M. Savino, "An efficient key revocation protocol
for wireless sensor networks," in Proceedings of IEEE WOW-
MOM'06, Niagara-Falls, Buffalo-NY, 26-29 June 2006.

[13] Alfred J. Menezes and Paul C. van Oorschot and Scott A.
Vanstone, Handbook of Applied Cryptography. CRC Press,
October 1996.

[14] Moteiv, "Tmote sky," http: //www. moteiv. com/.
[15] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and

K. S. J. Pister, "System Architecture Directions for Networked
Sensors," in Proceedings of the Ninth Symposium on Archi-
tectural Support to Programming Languages and Operating
Systems (ASPLOS), Cambridge, Massachusetts, United States,
November 2000, pp. 93-104.

[16] National Institute of Standards and Technology (NIST), "SKIP-
JACK and KEA algorithm specifications," 1998.

[17] R. L. Rivest, "The RC5 encryption algorithm," in Proceedings
of the Second International Workshop on fast Software Encryp-
tion, B. Preenel, Ed., vol. LNCS 1008. Leuven, Belgium:
Springer-Verlag, December 14-16 1994, pp. 86-96.

[18] National Institute of Standards and Technology, FIPSPUB 180-
1: Secure Hash Standard. Gaithersburg, MD, USA: National
Institute for Standards and Technology, Apr. 1995. [Online].
Available: http:Hwww.itl.nist.gov/fipspubs/fipl8O-l .htm

[19] C. Karlof, N. Sastry, and D. Wagner, "Tinysec: A link layer
security architecture for wireless sensor networks," in Pro-
ceedings of the Second International Conference on Embedded
Networked Sensor Systems (SenSys'04), Baltimore, MD, United
States, November 3-5 2004, pp. 162-175.

[20] D. Coppersmith and M. Jakobsson, "Almost optimal hash
sequence traversal," in Financial Cryptography, 2002, pp. 102-
119.

466

