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A B S T R A C T

In this research, some of the issues that arise from the scalarization of the multi-objective
optimization problem in the Advantage Actor–Critic (A2C) reinforcement learning algorithm
are investigated. The paper shows how a naive scalarization can lead to gradients overlapping.
Furthermore, the possibility that the entropy regularization term can be a source of uncontrolled
noise is discussed. With respect to the above issues, a technique to avoid gradient overlapping
is proposed, while keeping the same loss formulation. Moreover, a method to avoid the
uncontrolled noise, by sampling the actions from distributions with a desired minimum entropy,
is investigated. Pilot experiments have been carried out to show how the proposed method
speeds up the training. The proposed approach can be applied to any Advantage-based
Reinforcement Learning algorithm.

1. Introduction and formal background

1.1. Introduction

In last years, unprecedented results has been achieved in the Reinforcement Learning (RL) research field with the use of
rtificial Neural Networks (ANNs). In essence, in an RL model an agent interacts with its environment and, upon observation
f the consequences of its actions, learns to adapt its own behavior to rewards received. An agent behavior is modeled in terms
f state–action relationships. The goal of the agent is to learn a control strategy (i.e., a policy) maximizing the total reward. An
mportant advancement in the field has been the possibility to operate with high-dimensional state and action spaces via Deep
earning [1].

More specifically, policy gradient models optimize the policy, represented as a parameterized function, via gradient-descent opti-
ization. An increasing interest of the research community has recently led to the paradigm shift of multi-objective reinforcement

earning (MORL), in which learning control policies are simultaneously optimized over several criteria [2,3].
In RL Advantage learning is used to estimate the advantage of performing a certain action. [4] Consequently, in the Actor–Critic

AC) method a value function(which measures the expected reward) is learned in addition to the policy, in order to assist the
olicy update [5]. This model is based on a ‘‘Critic’’, which estimates the value function, and an ‘‘Actor’’, which updates the policy
istribution in the direction suggested by the ‘‘Critic’’ [6].

This research work focuses on some significant issues of the Advantage Actor–Critic (A2C) algorithm, that arise from the
calarization of the multi-objective optimization problem. Firstly, it shows that a naive scalarization can lead to gradients
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overlapping. Secondly, it investigates the possibility that the entropy regularization term can inject uncontrolled noise. With respect
to such issues, a technique to avoid gradient overlapping (called Non-Overlapping Gradient, NOG) is proposed, which keeps the same
loss formulation. Moreover, a method to avoid the uncontrolled noise, by sampling the actions from distributions with a desired
minimum entropy (called Target Entropy, TE), is investigated. Experimental results compare the A2C algorithm with the proposed
combination of A2C with NOG and TE (A2CNOG+TE).

With regard to performance evaluation, we carried out the hyperparameters optimization for each scenario over the same
ask [7]. Then using the best hyperparameters, we computed the confidence intervals over multiple runs.

As a relevant result, the combination of TE and NOG determines a decrease of the training time necessary to solve the problem.
pecifically, the proposed technique achieves a larger speedup for increasing problem complexity.

The algorithmic design of the proposed approach is compliant with any Advantage-based Reinforcement Learning algorithm
erived from A2C that share the same loss function components. The A2CNOG+TE algorithm has been developed, tested and publicly

released on the Github platform, to foster its application on various research environments.

1.2. Formal background

An RL problem defines an environment representing a task. The objective of an RL algorithm is to find an optimal policy that an
agent has to follow to solve the task. The environment can be represented as a Markov Decision Process (MDP). Denoting by 𝑆 the
state space, and by 𝐴 the action space, it can be defined: (i) the state transition function 𝑓𝑠(𝑠, 𝑎) ∶  × ⇒ ; (ii) the reward function
𝑟(𝑠, 𝑎) ∶  × ⇒ R.

The objective of an RL algorithm is then to find a policy 𝜋(𝑠) ∶  ⇒  such that following its trajectories  = {𝑎𝑡 = 𝜋(𝑠𝑡), 𝑠𝑡+1 =
𝑓𝑠(𝑠𝑡, 𝑎𝑡) ∀𝑡} the cumulative sum of the rewards ∑∞

𝑘=0 𝑟(𝑠𝑘, 𝑎𝑘) for any starting state 𝑠0 is maximized.
Usually, the policy is stochastic: 𝜋(𝑠) is a function that, for each state 𝑠 ∈ , returns the probability of each action 𝑎 ∈ ,

i.e., 𝜋(𝑠) ∶  ⇒  × (0, 1). By using 𝜋(𝑠, 𝑎) we assume that 𝑎 is the action sampled from a categorical distribution with probabilities
𝜋(𝑠), and 𝜋(𝑠, 𝑎) ∶  × ⇒ (0, 1) is the probability of the action 𝑎 in the distribution 𝜋(𝑠). Under such assumption, the objective is
to maximize the expectation of the cumulative sum of the rewards, i.e., E[∑∞

𝑘=0 𝑟(𝑠𝑘, 𝑎𝑘)] =
∑∞

𝑘=0 𝑟(𝑠𝑘, 𝑎𝑘)𝜋(𝑠𝑘, 𝑎𝑘).
In the literature, if the policy 𝜋(𝑠) is approximated using an ANN, the term Deep Reinforcement Learning is used. RL algorithms

are divided into two major categories: off-policy and on-policy [8]. The off-policy algorithms use stochastic techniques, for example
𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦, to explore the state space. In the first phase, such algorithms perform random actions and accumulate the transactions
in a replay memory. In the second phase, the off-policy algorithms sample some transactions from the replay memory, and use them
to train the policy. In contrast, the on-policy algorithms explore the space by following the policy and updating it via the current
transactions without a replay memory.

In this paper we focus on the issues that arise in a family of on-policy algorithms.

1.3. The Advantage Actor–Critic (A2C) algorithm

The Advantage Actor–Critic (A2C) algorithm, proposed by OpenAI, is the synchronous version of the Asynchronous Advantage
Actor–Critic (A3C) algorithm, proposed by Google [6]. It has been shown that A2C has the same performance of A3C but with a
lower implementation and execution complexity.

A2C is based on the REINFORCE algorithm [5]. Let us define, for each time step 𝑡, the future discounted cumulative reward
𝑅𝑡 =

∑∞
𝑖=0 𝛾

𝑖𝑟𝑡+𝑖. In the REINFORCE algorithm, each optimization step tends to maximize the expectation 𝐸[𝑅𝑡]. Let us denote
𝜃𝜋 the parameters of 𝜋(𝑠). The REINFORCE algorithm follows the optimization trajectory defined by 𝛥𝜃𝜋 𝑙𝑜𝑔(𝜋(𝑠, 𝑎|𝜃𝜋 ))𝑅𝑡, which is
an unbiased estimation of 𝛥𝜃𝜋𝐸[𝑅𝑡].1

Usually, the quantity 𝑙𝑜𝑔(𝜋(𝑠, 𝑎|𝜃𝜋 ))𝑅𝑡 has an high variance, and the optimization trajectories defined by 𝛥𝜃𝜋 𝑙𝑜𝑔(𝜋(𝑠, 𝑎|𝜃𝜋 ))𝑅𝑡 are
very noisy. To overcome this issue a baseline 𝑏(𝑡) is used to reduce the variance, and the gradient 𝛥𝜃𝜋 𝑙𝑜𝑔(𝜋(𝑠, 𝑎|𝜃𝜋 ))(𝑅𝑡 − 𝑏(𝑡)) is
computed. A classical baseline can be the mean of 𝑅𝑡.

The contributions of A2C to REINFORCE are twofold: to use an ANN 𝑉 (𝑠𝑡) approximating 𝑅𝑡 as the baseline 𝑏(𝑡), and to use this
ANN to bootstrap the 𝑅𝑡 computation in partially observed environmental trajectories.

In REINFORCE 𝑅𝑡 can be computed after the end of the episode. In contrast, in A2C the 𝑉 (𝑠𝑡) estimates 𝑅𝑡, and this value can
be used to estimate the future discounted cumulative reward before the end of the episode. Therefore, A2C performs an optimization
step every 𝑁 steps, without waiting for the end of the episode. A visual representation of this difference is given in Fig. 1. Here,
each box represents the current reward 𝑟𝑡 whereas 𝑅𝑡 represents the future total discounted cumulative reward. In the case of A2C,
the future total discounted cumulative reward is computed via the available cumulative reward �̃�𝑡 and an estimation of 𝑅𝑡 of the
last available state using 𝑉 .

Overall, the remainder of this paper is structured as follows. Section 2 is devoted to the scalarization issues of the A2C algorithm.
The proposed A2CNOG+TE algorithm is presented in Section 3. Experimental studies are covered by Section 4. Finally, Section 5
summarizes the major achievements and future work.

1 This is known as the log derivative trick.
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Fig. 1. 𝑅𝑡 computation in REINFORCE (left) and A2C2(right).

2. Scalarization issues of the A2C algorithm

The A2C algorithm uses two ANNs to approximate the two functions 𝜋(𝑠|𝜃𝜋 ) and 𝑉 (𝑠|𝜃𝑣). As previously stated, in A2C the
environment is observed only for 𝑁 steps (instead of waiting for the episode termination). Given the partial state–action–reward
(𝑠𝑘, 𝑎𝑘, 𝑟𝑘)∀𝑘 ∈ 𝑡𝑠,… , 𝑡𝑠 +𝑁 observation, the algorithm computes, for each 𝑘:

1. 𝑅𝑘 using 𝑉 (𝑠𝑁+1) as bootstrap: 𝑅𝑘 =
∑𝑁

𝑖=𝑘 𝛾
𝑖−𝑘𝑟𝑘 + 𝛾𝑁−𝑘𝑉 (𝑠𝑁+1);

2. The policy gradient 𝛥𝑝𝑔 = 𝛥𝜃𝜋 𝑙𝑜𝑔(𝜋(𝑠𝑘, 𝑎𝑘|𝜃𝜋 ))(𝑅𝑘 − 𝑉 (𝑠𝑘));
3. The 𝑉 (𝑠|𝜃𝑣) gradient 𝛥𝑣 = 𝛥𝜃𝑣 (𝑉 (𝑠𝑘|𝜃𝑣) − 𝑅𝑘)2;
4. The entropy gradient 𝛥ℎ = 𝛥𝜃𝜋

∑𝑁
𝑖=0 𝑙𝑜𝑔(𝜋(𝑠𝑖, 𝑎𝑖|𝜃𝜋 ))𝜋(𝑠𝑖, 𝑎𝑖|𝜃𝜋 ).

Subsequently, an optimization step is performed in the direction that maximizes both E[𝑅𝑘] (direction 𝛥𝑝𝑔) and the entropy
f 𝜋(𝑠𝑘) (direction 𝛥ℎ), as well as minimizes the mean squared error of 𝑉 (𝑠𝑘) (direction −𝛥𝑣). It is a multi-objective optimization

problem, which in the A2C algorithm has been solved with a scalarization. There are three different objectives, with some common
arameters. Both the entropy and policy gradients share 𝜃𝜋 .

Also 𝜋(𝑠) and 𝑉 (𝑠) often have some common parameters, because usually a feature extraction is performed on the state 𝑠, and the
eatures are used as inputs for 𝜋(𝑠) and 𝑉 (𝑠). Let us denote 𝐶(𝑠|𝜃𝐶 ) ∶  ⇒  the feature extraction function, with 𝜃𝐶 its parameters,
= 𝐶(𝑠|𝜃𝐶 ) the features. By substituting  with in  in the 𝜋(𝑠) and 𝑉 (𝑠) domains,3 then the computed gradients are:

𝛥𝑝𝑔 = 𝛥𝜃𝜋+𝜃𝐶 𝑙𝑜𝑔(𝜋(𝑓𝑘, 𝑎𝑘|𝜃𝜋 , 𝜃𝐶 ))(𝑅𝑘 − 𝑉 (𝑓𝑘)) (1)

𝛥𝑣 = 𝛥𝜃𝑣+𝜃𝐶 (𝑉 (𝑓𝑘|𝜃𝑣, 𝜃𝐶 ) − 𝑅𝑘)2 (2)

𝛥ℎ = 𝛥𝜃𝜋+𝜃𝐶

𝑁
∑

𝑖=0
𝑙𝑜𝑔(𝜋(𝑠𝑖, 𝑎𝑖|𝜃𝜋 , 𝜃𝐶 ))𝜋(𝑠𝑖, 𝑎𝑖|𝜃𝜋 , 𝜃𝐶 ) (3)

here 𝛥𝑝𝑔 is the policy gradient, 𝛥𝑣 is the error gradient for the estimator net 𝑉 , and 𝛥ℎ is a gradient of the entropy of the policy
et. The notation 𝛥𝜃𝜋+𝜃𝐶 (⋅) represents the gradient of the argument with respect to 𝜃𝜋 and 𝜃𝐶 .

An optimization step is performed in the direction of the scalarized objective −𝛥𝑝𝑔 + 𝛽𝛥𝑣 − 𝛼𝛥ℎ, where 𝛼 and 𝛽 are coefficients
ntroduced to weight the strength of the entropy regularization term and of the 𝛥𝑣 gradient, respectively. It is apparent that all the
hree objective functions share some parameters. Specifically, the gradient computed for the parameter 𝜃𝜋 contains the contributions
f 𝛥𝑝𝑔 and 𝛥ℎ. Furthermore, the gradient for the parameter 𝜃𝐶 contains the contributions of 𝛥𝑝𝑔 , 𝛥𝑣 and 𝛥ℎ.

A representation of the mutual dependency between gradients via related parameters is given in Fig. 2.
Each colored box represents a different gradient contribution to the overall loss related to: the policy 𝜋, the entropy ℎ, and the

otal discounted cumulative reward estimator 𝑉 . Here, each big box represents a different Neural Network (NN), whereas the inner
mall box represents its parameters (i.e. a connection weights). In Figure, the input and output of each NN are also represented: 𝐶(𝑠)
s fed by the state 𝑠 to extract the features 𝑓 , whereas both the policy NN 𝜋 and the estimator NN 𝑉 take the features as an input,
o provide the action probability vector 𝑝 and the future cumulative discounted reward estimate �̃�, respectively. In particular, each
radient is represented with a different color, and a dashed colored arrow from the gradient to the inputs highlights the backward
ath and thus the influence of a gradient to a parameter optimization. It is apparent that the sub-objectives are not independent,
ince they have common parameters. We call gradient overlapping this dependency among gradients. As a consequence, the policy
nd value function parameters can be pushed to sub-optimal regions.

Another issue that is considered in this research is the possibility that the entropy regularization term could generate noise in
he network parameters. Indeed, it can be observed in Formula (3) that the gradient 𝛥ℎ is not computed to reach a target entropy
evel, but just for increasing it.

In the next section the two issues are tackled considering also their reciprocal impact on the system performance.

2 For simplicity 𝑅𝑡 =
∑∞

𝑖=0 𝑟𝑡+𝑖 is used in this example.
3 𝜋(𝑓 ) ∶  ⇒  × (0, 1), 𝜋(𝑓, 𝑎) ∶  × ⇒ (0, 1) and 𝑉 (𝑓 ) ∶  ⇒ 𝑅.
3
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Fig. 2. Backward computation in the A2C algorithm.

3. The proposed A2CNOG+TE algorithm

In this section a solution to avoid the gradient overlapping when using the A2C scalarized objective function is proposed. It is
orth noting that to solve the gradient overlapping problem also allows to remove the weights coefficients of the scalarized objective

unction, thus reducing the hyperparameters search space, and then the optimization time. In the following, this approach will be
eferred to as the Non-Overlapping Gradient (NOG). Furthermore, an idea to solve the noise generated by the entropy regularization
erm is discussed. The idea is to maintain the entropy of the policy 𝜋(𝑓 ) above a target level without using any gradient. In the

following, this approach will be referred to as the Target Entropy (TE). As an effect, this can further reduce the gradient overlapping
phenomenon.

3.1. Non-overlapping-gradients (NOG)

The NOG technique consists in simplifying the backward computation flow represented in Fig. 2, to remove the gradient
overlapping on the feature extraction function 𝐶(𝑠), and to constrain the computation to the semantically appropriate functions.
Specifically, the only gradient contributing to the feature extraction function 𝐶(𝑓 ) optimization is 𝛥𝑝𝑔 . Similarly, the gradient 𝛥ℎ
should contribute just to the policy function 𝜋(𝑓 ) optimization, as well as the gradient 𝛥𝑣 should contribute just to the value function
(𝑓 ) optimization. According to such criterion, the new computed gradients are the following:

𝛥𝑝𝑔 = 𝛥𝜃𝜋+𝜃𝐶 𝑙𝑜𝑔(𝜋(𝑓𝑘, 𝑎𝑘|𝜃𝜋 , 𝜃𝐶 ))(𝑅𝑘 − 𝑉 (𝑓𝑘)) (4)

𝛥𝑣 = 𝛥𝜃𝑣 (𝑉 (𝑓𝑘|𝜃𝑣) − 𝑅𝑘)2 (5)

𝛥ℎ = 𝛥𝜃𝜋

𝑁
∑

𝑖=0
𝑙𝑜𝑔(𝜋(𝑠𝑖, 𝑎𝑖|𝜃𝜋 ))𝜋(𝑠𝑖, 𝑎𝑖|𝜃𝜋 ) (6)

where, with respect to Formulas (1), (2), (3), 𝛥𝑣 and 𝛥ℎ are computed respectively against 𝜃𝑣 and 𝜃𝜋 only.
This way, the gradient overlapping is sensibly reduced, but not totally disappeared. Specifically in this scenario the gradients

𝛥𝑝𝑔 and 𝛥ℎ still overlap via the parameters of the policy function 𝜃𝜋 . A visual representation of the new gradient computation is
given in Fig. 3, where a colored cross represents where the backward computation of the related gradient component stops.

Using the Non Overlapping Gradients technique the new scalarized objective function is −𝛥𝑝𝑔 +𝛥𝑣 − 𝛼𝛥ℎ. Note that the parameter
𝛽 is not needed because 𝛥𝑣 is totally independent.

3.2. Target entropy (TE)

In the previous section, it has been highlighted that the gradient 𝛥ℎ is not computed to reach a target entropy level but just
for increasing it. This can produce noise in the network parameters. In this section we propose a novel technique to maintain the
entropy of the policy 𝜋(𝑓 ) above a target level without using any gradient. As a consequence, the gradient overlapping can be
completely removed when using the TE technique in conjunction with NOG.

Let us denote 𝑝𝑎 = 𝜋(𝑓, 𝑎) the probabilities of each action 𝑎 ∈  given the features 𝑓 = 𝐶(𝑠) of the state 𝑠 ∈ , and 𝑝𝑚𝑎𝑥 the
highest probability. Let us observe that ∑𝑁

𝑖 𝑝𝑖 = 1. Let us define �̃� as:

�̃�𝑖 =

{

𝑝𝑖 − 𝜖 𝑖 = 𝑚𝑎𝑥
𝜖 (7)
4

𝑝𝑖 + 𝑁−1 𝑖 ≠ 𝑚𝑎𝑥
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Fig. 3. Backward computation in the A2CNOG algorithm.

The property ∑𝑁
𝑖 �̃�𝑖 = 1 is maintained,4 i.e., �̃� is still a valid categorical distribution. It is also important to notice that

(�̃�) < 𝐻(𝑝).
Let us recall the definition of entropy 𝐻(𝑥) = −

∑𝑁
𝑖 𝑙𝑜𝑔(𝑥𝑖)𝑥𝑖, and let us focus on just one of the entropy components 𝑙𝑜𝑔(𝑥)𝑥. It

an be easily compute the difference of one contribution in function of 𝜖𝛥ℎ(𝑥, 𝜖) = 𝑙𝑜𝑔(𝑥)𝑥− 𝑙𝑜𝑔(𝑥+ 𝜖)(𝑥+ 𝜖). Considering the overall
entropy difference 𝛥𝐻(𝑝, 𝜖) = 𝐻(𝑝) −𝐻(�̃�|𝜖), it can be written in function of 𝛥ℎ(𝑝, 𝜖) contributions, as follows:

𝛥𝐻(𝑝, 𝜖) =
𝑁
∑

𝑖
𝑙𝑜𝑔(𝑝𝑖)𝑝𝑖 −

𝑁
∑

𝑖
𝑙𝑜𝑔(𝑝𝑖)𝑝𝑖

𝛥𝐻(𝑝, 𝜖) =𝑙𝑜𝑔(𝑝0)𝑝0 +⋯ + 𝑙𝑜𝑔(𝑝𝑛)𝑝𝑛+

− (𝑙𝑜𝑔(𝑝0 +
𝜖

𝑁 − 1
)(𝑝0 +

𝜖
𝑁 − 1

) +⋯

+ 𝑙𝑜𝑔(𝑝𝑛−1 +
𝜖

𝑁 − 1
)(𝑝𝑛−1 +

𝜖
𝑁 − 1

) + 𝑙𝑜𝑔(𝑝𝑚𝑎𝑥 − 𝜖)(𝑝𝑚𝑎𝑥 − 𝜖))

Rearranging the terms, 𝛥𝐻(𝑝, 𝜖) can be rewritten as:

𝛥𝐻(𝑝, 𝜖) =(𝑙𝑜𝑔(𝑝0)𝑝0 − 𝑙𝑜𝑔(𝑝0 +
𝜖

𝑁 − 1
)(𝑝0 +

𝜖
𝑁 − 1

))+

⋯

+ (𝑙𝑜𝑔(𝑝𝑛−1)𝑝𝑛−1 − 𝑙𝑜𝑔(𝑝𝑛−1 +
𝜖

𝑁 − 1
)(𝑝𝑛−1 +

𝜖
𝑁 − 1

))

+ 𝑙𝑜𝑔(𝑝𝑚𝑎𝑥 − 𝜖)(𝑝𝑚𝑎𝑥 − 𝜖)

Expressing it in function of 𝛥ℎ:

𝛥𝐻(𝑝, 𝜖) = 𝛥ℎ(𝑝0,
𝜖

𝑁 − 1
) +⋯ + 𝛥ℎ(𝑝𝑛−1,

𝜖
𝑁 − 1

) + 𝛥ℎ(𝑝𝑚𝑎𝑥,−𝜖)

Let us assume that 𝜖 is small and close to zero. The Taylor expansion of 𝛥ℎ(𝑝, 𝜖) where 𝜖 = 0 can be computed as follows:

𝜕
𝜕𝜖

𝛥ℎ(𝑝, 𝜖) = − ( 1
𝑝 + 𝜖

(𝑝 + 𝜖) + 𝑙𝑜𝑔(𝑝 + 𝜖)) = −𝑙𝑜𝑔(𝑝 + 𝜖) − 1

𝛥ℎ(𝑝, 𝜖)|𝜖∼0 ≈ 𝛥ℎ(𝑝, 0) +
𝜕
𝜕𝜖

𝛥ℎ(𝑝, 0)𝜖

𝛥ℎ(𝑝, 𝜖)|𝜖∼0 ≈ 𝑙𝑜𝑔(𝑝)𝑝 − 𝑙𝑜𝑔(𝑝)𝑝 + (−𝑙𝑜𝑔(𝑝) − 1)𝜖 ≈ −𝑙𝑜𝑔(𝑝)𝜖 − 𝜖

𝛥ℎ(𝑝, 𝜖)|𝜖∼0 ≈ − 𝜖(𝑙𝑜𝑔(𝑝) + 1)

Finally, by substituting back the approximation of 𝛥ℎ(𝑝, 𝜖) in 𝛥𝐻(𝑝, 𝜖), the following approximation can be derived:

𝛥𝐻(𝑝, 𝜖) = 𝛥ℎ(𝑝0,
𝜖

𝑁 − 1
) +⋯ + 𝛥ℎ(𝑝𝑛−1,

𝜖
𝑁 − 1

) + 𝛥ℎ(𝑝𝑚𝑎𝑥,−𝜖)

𝛥𝐻(𝑝, 𝜖) ≈ − 𝜖
𝑁 − 1

(𝑙𝑜𝑔(𝑝0) + 1)⋯ − 𝜖
𝑁 − 1

(𝑙𝑜𝑔(𝑝𝑛−1) + 1) + 𝜖(𝑙𝑜𝑔(𝑝𝑚𝑎𝑥) + 1)

𝛥𝐻(𝑝, 𝜖) ≈ − 𝜖
𝑁 − 1

(𝑙𝑜𝑔(𝑝0) + 𝑙𝑜𝑔(𝑝1) +⋯ + 𝑙𝑜𝑔(𝑝𝑛−1) − (𝑁 − 1)(𝑙𝑜𝑔(𝑝𝑚𝑎𝑥) + 1) + (𝑁 − 1))

4 ∑𝑁 �̃� =
∑

�̃� + 𝑝 =
∑

𝑝 − (𝑁 − 1) 𝜖 + 𝑝 − 𝜖 =
∑

𝑝 + 𝑝 − 𝜖 + 𝜖 =
∑𝑁 𝑝 = 1.
5
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Fig. 4. Backward computation in the A2CTE algorithm.

𝛥𝐻(𝑝, 𝜖) ≈ − 𝜖
𝑁 − 1

(
𝑛−1
∑

𝑖
𝑝𝑖 − (𝑁 − 1)𝑙𝑜𝑔(𝑝𝑚𝑎𝑥) − (𝑁 − 1) + (𝑁 − 1))

𝛥𝐻(𝑝, 𝜖) ≈ − 𝜖(
∑𝑛−1

𝑖 𝑝𝑖
𝑁 − 1

− 𝑙𝑜𝑔(𝑝𝑚𝑎𝑥))

𝛥𝐻(𝑝, 𝜖) ≈ − 𝜖(𝐴𝑉 𝐺𝑖≠𝑖𝑚𝑎𝑥 [𝑝𝑖] − 𝑙𝑜𝑔(𝑝𝑚𝑎𝑥))

Using the above formula, 𝜖 can be computed as follows, in order to achieve a desired entropy 𝑇ℎ of 𝑝:

𝜖 = −
𝐻(𝑝) − 𝑇ℎ

𝐴𝑉 𝐺𝑖≠𝑖𝑚𝑎𝑥 [𝑝𝑖] − 𝑙𝑜𝑔(𝑝𝑚𝑎𝑥)
(8)

As a consequence, the action can be sampled from �̃�|𝜖 instead of 𝑝, i.e., to sample the action from a categorical distribution with
an entropy higher than 𝑇ℎ. It is worth to notice that the action from the �̃�|𝜖 distribution can still be sampled using the 𝛥𝑝𝑔 gradient
computation represented in Fig. 4. As a result, the technique allows to keep a certain exploration over exploitation ratio, and at the
same time it avoids raising entropy.

Using the Target Entropy technique, the new scalarized objective function is −𝛥𝑝𝑔 + 𝛽𝛥𝑣. It can be noted that there is no 𝛥ℎ term.
Fig. 4 represents the resulting backward computation. Here, the focus is on the NN 𝜋, whose output 𝑝 is now transformed using the
Target Entropy according to (7) and (8). The resulting �̃� is used to sample an action 𝑎. As a result, there is no more a contribution to
he gradient related to 𝛥ℎ. Then, the scalarization coefficients are not needed, because there are only two independent contributions
o the gradient.

In the next section, the advantages of the NOG and TE techniques are experimentally evaluated.

. Experimental studies

In order to investigate the combined effect of the NOG and TE techniques, two different algorithms have been experimented:

1. Classical A2C (A2C)
2. A2C with Non-Overlapping-Gradients and Target Entropy (A2CNOG+TE)

For each training algorithm, first a hyperparameters optimization has been carried out. Subsequently, the best hyperparameters
ave been used to calculate the confidence interval, over 10 runs, of the training time needed to solve the problem.

To perform the experiments, three environments sufficiently complex to solve, which allow the hyperparameters optimization
n a reasonable time, have been considered: EnergyMountainCar, CartPole and LunarLander, all from OpenAI Gym [9].

.1. Hyperparameters optimization

Table 1 shows the hyperparameters to optimize, for the considered algorithms. In order to sample the hyperparameters to use
or each run, it has been used the Tree-structured Parzen Estimator (TPE) [7], whereas to prune unpromising runs it has been used
he Successive Halve Pruning (SHP) [10]. More precisely every 1000 steps the current reward EMA (Exponential Moving Average)
s reported to the SHP pruner.

Each run has been evaluated for 100 episodes, and the mean reward has been used as objective function (to maximize) for
he hyperparameters optimization. All hyperparameters optimization has been run on an Intel Xeon with 40 cores. It follows, for
ach environment, a brief description, the results of the hyperparameters optimization, and the performance evaluation for the two
omparative algorithms.
6
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a

Fig. 5. The EnergyMountainCar environment.

Table 1
Hyperparameters to optimize.
Name Range Sampling Description

𝛾 [0.9, 0.99, 0.999] Categorical Discount factor
𝑁 [8, 16, 32, 64] Categorical Env. steps for training step
lr (10−5 , 10−2) LogUniform Learning rate
mcn (0, 2) Uniform Max gradient clip norm
𝛼 (10−4 , 10−1) LogUniform 𝛥ℎ strength
𝛽 (0, 1) Uniform 𝛥𝑣 strength
𝑇ℎ (0, 0.2) Uniform Target Entropy

Table 2
EnergyMountainCar: best hyperparameters found for each
algorithm.
Parameter A2C A2CNOG+TE

𝛾 0.999 0.999
𝑁 16 64
lr 0.0007139 0.00003798
max-clip-norm 1.419 0.2302
𝛼 0.0003160
𝛽 0.1833
𝑇ℎ 0.0739

4.2. The EnergyMountainCar environment

In EnergyMountainCar a car drives up a hill which is steep with respect to its engine. Since the car is positioned in a valley, the
gent must learn to drive back and forth to build up momentum. Fig. 5 shows the environment and its control variables.

Specifically, the state space has 2 components: car’s horizontal position (𝑥) and horizontal speed (�̇�). Three different actions can
be performed by the agent: no action, accelerate (𝐹 ) to the left or to the right. The reward is computed as the car’s total energy
difference (potential and kinetic) of the last time step.

An episode finishes when the car reaches the top of the right hill. The goal is to spend less energy as possible. The environment
is considered solved by achieving a cumulative reward of 0.45 points.

Fig. 6 shows the objective value of the hyperparameters optimization process, against the number of trials sampled, for the
comparative algorithm. The running best objective value is highlighted by a continuous line. In particular, it can be noted that the
best objective value is immediately achieved by the A2CNOG+TE, whereas it is achieved at the fifth iteration by the A2C.

Fig. 7 represents the hyperparameters values optimization and the related objective value, for the two algorithms. Here, each
line represents a trial, with its hyperparameters values represented on the vertical axes. According to the colorbar, the blue level
of the line allows to distinguish the best solutions. Here, it can be observed that the hyperparameters values corresponding to the
highest objective values are more scattered for the A2C.

For the sake of completeness, Table 2 shows the best hyperparameters value for each considered algorithm.
After setting the best hyperparameters for each algorithm, the training process has been carried out 10 times for both algorithms.
Fig. 8 shows the episode reward versus the training step for each algorithm, with its 95% confidence interval. Precisely, the steps

to solve the problem via the proposed A2CNOG+TE algorithm and via the classical A2C are 2511 ± 378 and 2702 ± 433, respectively.
The proposed approach improves the time efficiency of the A2C, up to more than 1.08x of average speedup.
7
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Fig. 6. EnergyMountainCar: objective value of the hyperparameters optimization process over time, for the comparative algorithms. The solid line highlights
the best values.

4.3. The CartPole environment

CartPole, also known as inverted pendulum, is a pendulum with the center of mass above its pivot point. Fig. 9 shows the
nvironment and its control variables. The pivot point is an axis of rotation mounted on a cart, limiting the pendulum to one
egree of freedom, along which the cart can move horizontally. Any displacement from the vertical position causes a gravitation
orque and a consequent fall, if not balanced by the cart movement. The agent controls the cart in order to prevent the pendulum
rom falling, by applying a force 𝐹 of ±1. The state space is represented by 4 components: cart position (𝑥), cart velocity (�̇�), pole
ngle (𝛩), and pole tip angular velocity (�̇�). The action space is two-dimensional: moving left or right. A reward of +1 is provided
or every timestep with the pole upright. An episode ends when the pole is more than 15 degrees from vertical, or when the cart
oves more than 2.4 units from the start. The goal is to keep the pole upright as much as possible. The environment is considered

olved by achieving a cumulative reward of 195 points.
Fig. 10 shows the objective value of the hyperparameters optimization process, against the number of trials sampled, for the

omparative algorithm. It is worth noting that, there is a lower number of trials in the hyperparameters optimization of A2C.
pecifically, during the optimization, there are unpromising trials which are aborted during the training process by the pruning
lgorithm. The figures clearly show that the A2C has been more affected by pruning with respect to the A2CNOG+TE.

Fig. 11 represents the hyperparameters values optimization and the related objective value, for the two algorithms. Here, each
ine represents a trial, with each hyperparameter value represented on the vertical axes. According to the colorbar, the blue level
f the line allows to distinguish the best solutions. Here, it can be observed that for some hyperparameters values there is a higher
ensity of good trials.

For the sake of completeness, Table 3 shows the best hyperparameters value for both algorithms.
After setting the best hyperparameters for each algorithm, the training process has been carried out 10 times for each algorithm.
Fig. 12 shows the episode reward versus the training step for each algorithm, with its 95% confidence interval. Precisely, the

steps to solve the problem via the proposed A2CNOG+TE algorithm and via the classical A2C are 848±197 and 999±108, respectively.
The proposed approach sensibly improves the time efficiency of the A2C, up to more than 1.18x of average speedup.

4.4. The LunarLander environment

LunarLander is a control task, in which the agent controls the landing of a spacecraft. The spacecraft is initialized at the top of
the environment, with a random velocity and angular momentum. Fig. 13 shows the environment and its control variables.
8
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Fig. 7. EnergyMountainCar: hyperparameters values optimization and related objective value, for the comparative algorithms.

Fig. 8. EnergyMountainCar: reward versus training step, for each algorithm.

Specifically, the state space has 8 components: horizontal position and velocity (𝑥, �̇�), vertical position and velocity (𝑦, �̇�), angle
𝛩) and angular momentum (�̇�), right and left leg state (that is, leg ground contact). Four different actions can be performed by the
9

gent: no action, fire left engine (𝐹𝑙), fire right engine (𝐹𝑟) and fire main engine (𝐹𝑐). The spacecraft has infinite fuel. The reward
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Fig. 9. The CartPole environment.

Fig. 10. CartPole: objective value of the hyperparameters optimization process over time, for the comparative algorithms. The solid line highlights the best
values.

Table 3
CartPole: best hyperparameters found for each algorithm.
Parameter A2C A2CNOG+TE

𝛾 0.99 0.99
𝑁 64 64
lr 0.0009591 0.001642
max-clip-norm 0.3898 1.3569
𝛼 0.0006986
𝛽 0.5996
𝑇ℎ 0.166

is computed as follows: −0.3 points for each frame with the main engine on, +100 points for a successful landing, -100 points for
crashing, +10 points for each leg making contact with the ground, and a value ranging from 100 to 140 evaluating the spacecraft
trajectory to the pad. An episode finishes when the spacecraft lands or crashes. The goal is to land the spacecraft using as less fuel
as possible. The environment is considered solved by achieving a cumulative reward of 200 points.

Fig. 14 shows the objective value of the hyperparameters optimization process, against the number of trials sampled, for the
comparative algorithm. It is worth noting that, actually, good hyperparameters can be found after just 20 trials. It is worth noting
10



F.A. Galatolo et al.
Fig. 11. CartPole: hyperparameters values optimization and related objective value, for the comparative algorithms.

Fig. 12. CartPole: reward versus training step, for each algorithm.

that, there is a lower number of trials in the hyperparameters optimization of A2C. Specifically, during the optimization, there are
unpromising trials which are aborted during the training process by the pruning algorithm. The figures clearly show that the A2C
has been more affected by pruning with respect to the A2C .
11
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Fig. 13. The LunarLander environment.

Fig. 14. LunarLander: objective value of the hyperparameters optimization process over time, for the comparative algorithms. The solid line highlights the best
alues.

Fig. 15 represents the hyperparameters values optimization and the related objective value, for the two algorithms. Here, each
ine represents a trial, with its hyperparameters values represented on the vertical axes. According to the colorbar, the blue level of
he line allows to distinguish the best solutions. In particular, in Fig. 15(b) it can be observed that for some hyperparameters values

there is a higher density of good trials.

Table 4 shows the best hyperparameters value for each considered algorithm.

After setting the best hyperparameters for each algorithm, the training process has been carried out 10 times for each algorithm.

Fig. 16 shows the episode reward versus the training step for each algorithm, with its 95% confidence interval. Precisely, the steps
to solve the problem via the proposed A2CNOG+TE algorithm and via the classical A2C are 2045±446 and 6265±2615, respectively. It
is apparent that the proposed approach sensibly improves the time efficiency of the A2C, up to more than 3.06x of average speedup.
12
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Fig. 15. LunarLander: hyperparameters values optimization and related objective value, for the comparative algorithms.

Table 4
LunarLander: best hyperparameters found for each algorithm.
Parameter A2C A2CNOG+TE

𝛾 0.999 0.999
𝑁 64 64
lr 0.0002473 0.0002292
max-clip-norm 0.3668 0.3462
𝛼 0.0003978
𝛽 0.4832
𝑇ℎ 0.0917

Table 5
Confidence intervals of the steps to solve some benchmark environments, via A2C and A2CNOG+TE
algorithms.
Environment State space size A2C A2CNOG+TE Average speedup

EnergyMountainCar 2 2702 ± 433 2511 ± 378 1.08x
CartPole 4 999 ± 108 848 ± 197 1.18x
LunarLander 8 6265 ± 2615 2045 ± 446 3.06x

4.5. Results summary

Table 5 summarizes the 95% confidence intervals of the training steps needed to solve the three considered environments, via
2C and A2CNOG+TE, and the speedups with respect to A2C. The effectiveness of the proposed A2CNOG+TE is apparent for increasing

environment complexity (i.e., state space size).
13
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Fig. 16. LunarLander: reward versus training step, for both algorithms.

The A2CNOG+TE algorithm has been developed, tested and publicly released on the Github platform [11], to foster its application
on various research environments.

5. Conclusions

In the Advantage Actor–Critic (A2C) algorithm, two issues of the scalarization of the multi-objective optimization problem are
discussed and addressed. Specifically, an approach to avoid gradient overlapping (NOG) and to control the entropy (TE) of the
action distribution is formally designed. The proposed variant, called A2CNOG+TE, and the classical A2C, are experimented, after
performing the hyperparameters optimization.

The proposed techniques are designed to be used on all the reinforcement learning algorithms derived from A2C that share the
same loss function components. Although the preliminary experiments look promising, more research is needed to both investigate
the performance improvements on different environments and on different Advantage based algorithms.
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