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ABSTRACT
Anomaly detection in video streams with imbalanced data and
real-time constraints is a challenging task of computer vision. This
paper proposes a novel real-time approach for real-world video
anomaly detection exploiting a supervised learning methodology.
In particular, we present a deep learning architecture based on the
analysis of contextual, spatial, and motion information extracted
from the video. A data balancing strategy based on hard-mining
and adaptive framerate is used to avoid overfitting and increase
detection accuracy. The approach defines an extended taxonomy
by differentiating anomalies in "soft" and "hard". A novel anomaly
detection score based on a sigmoidal function has been introduced
to reduce false positive rate while maintaining a high level of true
positive rate. The proposed methodology has been validated with a
set of experiments on a well-known video anomaly dataset: UCF-
CRIME. The experiments on the testbed demonstrate the impact
of the contextual information and data balancing on the classifi-
cation performances, considering only "hard" anomalies during
training and that the proposed model can achieve state-of-the-art
performances while minimizing resource consumption.

CCS CONCEPTS
• Computing methodologies → Scene anomaly detection; •
Applied computing → Surveillance mechanisms.

KEYWORDS
Anomaly detection, Behavioral analysis, Deep Learning, Computer
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1 INTRODUCTION
Nowadays, the advances in Information and Communication Tech-
nologies (ICT) have led to the transformation of the environments
in intelligent entities, e.g., smart-home, smart-buildings, smart-city
that offer a set of interconnected devices empowered by computa-
tional and wireless communication capabilities. Such devices can
provide services to everyday activities for better quality living.
Network cameras are widely used in such environments and are
exploited to develop applications such as license plate recognition
[37], people counting [5], vehicle/person tracking [2, 35], safety
control of smart objects [11]. In the last years, the public safety
aspects have increasingly gained attention in our society. Many
applications in the video surveillance field have been developed
through the diffusion of networks of cameras and the advances
in Artificial Intelligence (AI). One of the main tasks in the video
surveillance field is given by the supervision of multiple monitors to
the end to detect anomalous behavior as quickly as possible. There-
fore, there is a growing demand for an intelligent video surveillance
system that automatically and real-time detects anomalous behav-
ior, e.g., crimes, illegal activities, or environmental incidents, and
timely raises the alarm. In most cases, anomalous behaviors are
rare events that do not occur frequently or rapid behaviors that
happen in few seconds. Therefore, they become difficult to capture.
Moreover, video information is challenging to represent due to its
high dimensionality and noise that can affect the scene, e.g., oc-
clusion, low camera quality, high brightness. In addition to these
factors, anomaly behaviors are, by their nature, highly correlated
to the context, i.e., the running behavior is in itself normal but can
be considered anomalous if it is done in an inappropriate context.
These challenges have made it difficult for machine learning meth-
ods to identify video patterns that produce anomalies in real-world
applications. There are many successful cases in the related field
of behavioral recognition [17, 27]. However, these methods detect
behaviors that consist of clearly defined actions in pre-defined con-
texts, without significant video noise issues. Other works that treat
the task as a binary classification problem (anomalous or normal
behavior) [25] proved to be accurate to detect anomalies. However,
they are validated in datasets where the anomalies are related to
limited contexts and can be easy to distinguish, i.e., a moving car
in a pedestrian street [29].

The rest of the paper is structured as follows. Section 2, reports
different literature works related to the anomaly detection prob-
lem and highlights their advantages and disadvantages. Section 3
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presents the proposed anomaly detection’s methodology. In Sec-
tion 4 we describe the dataset used and the experiments conducted.
Section 5 shows the results obtained from the experiments and pro-
vides a discussion on the proposed methodology’s impact. Section
6 briefly concludes and proposes also some future work directions.
To summarize, this paper provides the following contributions:

• We propose a novel lightweight deep learning architecture
for real-time video anomaly detection that considers contex-
tual, spatial, and motion information.

• We introduce a novel anomaly score mechanism based on
the sigmoidal function that produces a more robust anomaly
score reducing the false-positive rate, maintaining a high
level of true positive rate.

• We propose a data balancing mechanisms to be applied dur-
ing training and based on hard-mining and an adaptive sam-
pling rate.

• We defined two types of anomaly frames based on the tempo-
ral evolution of the anomalous activity. Soft anomaly frames,
i.e., frames in which something anomalous is going to hap-
pen or that happened, without the anomaly being properly
in progress, and hard anomaly frames, i.e., frames in which
the anomaly is currently in action.

• We analyzed the learning activity using the GradCam ex-
plainability tool to assess which part in the frame contributes
to the anomaly detection and exploit the results as a tool for
anomaly localization in the scene.

Link to code:
github.com/iitcybersecurity/RealWorldVideoAnomalyDetection

2 RELATED WORKS
Video anomaly detection is one of the most complexes and studied
problems of computer vision. An anomaly is any pattern that does
not conform to what is considered normal [1]. The two classes that
characterize the problem are defined as one the negation of the
other and both can take completely different forms, specific to the
problem under consideration, i.e., a person who runs can be con-
sidered an anomaly within a public office but is normal in contexts
such as stations or parks. Moreover, it is not easy to establish a
priori all the possible anomalies that may occur even considering a
single context.

Handcrafted Methods. The first methods of anomaly detec-
tion were trajectory-based [19, 23]. The main idea is to identify the
distinct trajectories of objects within normal videos. The anomalies
are highlighted as objects that do not follow similar trajectories.
However, these methods are of restricted applicability and can be
used only in the presence of constant and unobstructed trajecto-
ries. The use of other handcrafted features allows enriching the
ability of a detector to identify more general classes of anomalies,
not limited to trajectories only. These low-level features generally
extrapolate information about appearance, movement, and texture.
Histograms of optical flows [7], histograms of oriented gradients [18],
social forces maps [30] and mixture of dynamic textures [24], are
just some of the methods developed. Although very effective in
identifying specific anomalies, these feature extraction methods

cannot adapt to categories of abnormalities not previously seen.

Semi-SupervisedMethods.To overcome these problems, some
of the most used approaches are typically semi-supervised. This
learning method category uses only normal videos to train the
detector to identify anomalies as any deviation from the notion of
normality that they have learned. Precisely avoiding giving a spe-
cific characterization to anomalies allows this type of detector to be
more robust towards types of abnormalities not initially foreseen.
Another great help given to the generalization capabilities of anom-
aly detectors is the use of features extracted through Deep Neural
Networks (DNNs) [21]. Neural networks allow to autonomously
extract semantically significant features that can introduce a better
generalization capability with respect to the handcrafted ones. The
current state-of-the-art combines semi-supervised approaches and
neural networks. Among the most popular approaches in literature,
we can mention autoencoders [13] and Generative Adversarial Net-
works (GAN) [31]. These networks are usually trained on images
– frame and optical flow – extracted from normal videos to recon-
struct them or predict the next in time order [28]. When anomalous
images are presented to the network this is generally not able to
recreate them, as it is trained only on normal images. The anomaly
generates a greater reconstruction error, allowing it to be distin-
guished. Although certainly more robust than handcrafted methods,
techniques based on image reconstruction also have limitations, i.e.,
the networks may be able to reconstruct even the anomalies [12],
not allowing them to be distinguished. In [3] it is highlighted that
deep learning method are also characterized by a lack of explain-
ability. In this work, the GradCam tool [32] is used as a method to
locate the regions in a frame that contributes most to the assign-
ment of a higher reconstruction error in their auto-encoder based
approach.

Supervised Methods. These approaches involve the use of la-
beled videos to reduce the problem of binary classification. The
main obstacle to studying these methods is the non-availability of
large labeled datasets, which are very expensive to produce. Re-
cently [34] introduced a new dataset for the detection of real-life
anomalies concerning crimes – e.g., robberies, assaults, shootings –
with more than 128 hours of untrimmed videos (UCF-Crime). The
same paper proposes a multiple instance learning method that al-
lows the training ofweakly supervised binary classifiers using labels
at video level. More recently in [22] the UCF-Crime dataset has
been enriched with spatiotemporal annotations (UCFCcrime2local),
allowing the experimentation of strongly supervised methods. Some
commonly used neural networks in a supervised environment are
3D convolutional networks [36]. These are also often exploited in the
field of action recognition [38] and allow to extrapolate spatiotem-
poral features able to describe the actions inside video segments.
They can also be used in the form of two-stream networks [6] to
extract features from streams with different frame rates or using an
optical flow stream in parallel with the video stream. However, 3D
networks have the problem of being particularly heavy, both for
training and inference. For practical applications, lighter networks
such as 2D-CNNs can be taken into consideration by enriching
their capabilities using solutions to add time and motion informa-
tion to the spatial features extracted from the network. Temporal

github.com/iitcybersecurity/RealWorldVideoAnomalyDetection
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Figure 1: Diagram of the proposed model. The double stream network consists of two ResNet-50 that take in input the current
frame and the optical flow calculated between current and previous frames. The features extracted from the double stream
network are concatenated to the bag-of-objects made using YOLOv4 object detector on the current frame. The concatenated
features are then forwarded to two fully connected layers of 4096 neurons to produce the classifier anomaly score.

information can be added, for example, by feeding Long-Short-Term-
Memory networks (LSTM) with the spatial features extracted by the
CNN as in [15] while motion information can be included using a
two-stream solution [33].

3 PROPOSED METHODOLOGY
The following section describes the proposed model together with
techniques for efficient and effective data utilization during training
and a novel approach for anomaly score.

3.1 Contextual Information Extraction
The object detector used is YOLOv4 [4]. It is currently state-of-the-
art in terms of efficiency and accuracy while still having a rate of
inference that allows real-time video analysis. We use a version
of YOLO pre-trained on MS COCO [26], a dataset with 80 classes
that include people, animals, vehicles, and everyday objects. Video
frames are given in input to YOLO to create contextual features
used by a classifier downstream. Such features are constructed as a
vector containing the number of objects identified for each class in
the frame, which from now on will be defined as bag-of-objects (see
Figure 1). The idea is that in a context such as that of UCF-Crime,
the introduction of information on specific classes of objects in the
scene may be useful to a classifier that can weigh these features
against other factors such as temporal and spatial information.

3.2 Spatial and Motion information extraction
Spatial and motion features are extracted through a two-stream
architecture. Figure 1 shows the proposed model that involves a
pretrained ResNet-50 [14] on ImageNet [8] as base convolutional net-
work. In particular, the model receives as input streams the frames
and optical flow (pattern of apparent motion caused by the relative
movement between an observer and a scene [16]) extracted from
the video that is being analyzed. The features obtained from the
two streams are extracted from the last convolutional layer through

a global average pooling. These features, according to a joint fusion
architecture, are concatenated to the bag-of-objects extracted from
the current frame and given in input to a fully connected classifier.
Specifically, this is composed of two fully connected layers with
ReLu activation, consisting of 4096 neurons each and connected to
a final neuron that produces as anomaly score the anomaly class
confidence between [0, 1].

3.3 Data Balancing
One of the main issues in the training of the anomaly detection
model lies in the balance between the classes. It concerns both the
higher absolute number of frames considered normal compared to
those containing anomalies and their distribution in the videos. A
supervised model needs to use a training distribution of videos that
include as many different types of anomalies as possible; in addition,
for the same anomaly (e.g., shooting, robbery), it is important to
have multiple different videos in different scenarios contexts. The
solution proposed to manage these issues involves using different
sampling framerates for anomalous and normal segments and hard
mining.

Adaptive Sampling Framerates. During the training phase,
it is necessary to subdivide the videos into single frames or seg-
ments of adjacent frames respectively for 2D-ConvnNets and 3D-
ConvNets. For 2D-CNNs, the most straightforward solution is to
split videos into single frames respecting the original framerate,
for instance, 30 FPS in UCF-Crime. Applying this mechanism, we
obtained a large amount of redundant data: two adjacent frames
contain only slight differences that require an increasing training
cost and can produce overfitting problems. A simple solution to
this problem is using a lower framerate for frame sampling than
the original one. In this way, with the same resources, it is possible
to use a greater variety of videos to allow the network to generalize
the anomalies better. This method can also be used in an adaptive
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way to sample with an even lower framerate normal videos. In
such a context, sudden movements are not relevant. Thus an under-
sampling does not reduce the training quality. The same principle
can be applied in 3D-CNNs where the stride (the overlap between
two segments extracted consecutively) can be greater for segments
containing anomalies and lower for normal ones.

Hard Mining. As described in [9] hard mining is a method
that involves selecting – mine – the samples with greater loss
to be used during the training phase. In our approach is used a
batch-wise hard mining. Considering using batches of K samples
during training, for each batch, we sample without replacement
αK candidates frames, where α is a multiplicative factor. First, an
inference operation is performed on the candidates to calculate
the losses; after, only the K first samples with greater loss are
selected, regardless of whether they are hard-positives or hard-
negatives, and used as a real batch training. In such a way, in each
epoch, only 1

α of the total training samples are used. Hard mining
impacts anomaly detection problems because they are characterized
by a large variety, although these consist of only two classes. In
particular, the anomalous class is actually made up of several sub-
classes, the individual anomalies which are equally important and
must all be recognized by a classifier. Hard mining, therefore, allows
for adaptive sampling of these sub-classes in every epoch.

3.4 Hard and Soft Anomalies
In untrimmed videos, the distinction between anomalous video seg-
ments and normal segments may become unclear. Before an anom-
aly and immediately after its end, we can consider video segments
in which it is respectively guessable that something anomalous will
happen or that happened, without the anomaly being properly in
progress. For example, before a theft of objects in a car is possible to
guess that something will happen if someone suspicious is looking
through the windows of the vehicle. In the same way, it is guessable
that a theft occurred if a car has a broken glass and it is scattered
on the ground. These suspicious video segments can be consid-
ered as soft anomalies. They are not properly normal segments as
they have ambiguous behaviors in them. However, they cannot be
considered even true anomalies (hard anomalies) as they do not
contain real crimes. Labelling soft anomalies as completely normal
or completely anomalous should therefore be avoided in order to
improve training quality.

3.5 Sigmoidal Anomaly Score
In [10] the classifier’s output value is not used directly to perform
online anomaly detection, but they preferred to use a more noise-
robust method to calculate the final anomaly score. Similarly in our
model we could use the confidence value of the anomalous class as
anomaly score and alert when this value is higher than a certain
alarm threshold. The score thus computed, however, is very noisy
and causes frequent false positives. For this reason, we propose the
sigmoidal anomaly score (SAS) as novel method for calculating
the anomaly score using only two main parameters: sensibility and
reactivity. Anomaly score st is calculated as:

st = S(xt ) =
1

1 + e−xt

Where S : R→ [0, 1] is a standard logistic sigmoid function and xt
the value of the accumulator at time t computed as:

xt =

{
xt−1 + ∆+t ν if σt ≥ τ
xt−1 − ∆−

t ν if σt < τ
with xt ∈ [LB,UB]

Where σt is the anomaly class confidence calculated at time t by
the classifier, xt−1 is the accumulator’s value calculated at previous
step, τ ∈ [0, 1) is the sensibility threshold and ν ∈ (0,+∞) the
reactivity parameter. ∆+t ,∆

−
t ∈ [0, 1] can be determined as:

∆+t =
σt − τ

1 − τ
; ∆−

t =
1 − σt − τ

1 − τ

They are the increase or decrease in score caused by exceeding or
not the sensibility threshold τ . The closer τ gets to 1, more con-
fidence is needed in anomaly classification to increase the score
value, the closer τ is to 0, more sensitive the score is to lower confi-
dence classifications. Reactivity ν is instead a multiplicative factor
that allows to decide how quickly the score grows or decreases: a
high value of ν will make the score more sensitive to anomalies that
take place in short time intervals, but making false positives due to
noise more likely. A value of ν below 1, on the contrary, allows to
filter the noise more effectively and makes the score less sensitive
to sudden anomalies. To avoid that the accumulator x assumes too
high or low values, these are limited by a lower and upper bound
(LB,UB).

4 EXPERIMENTS
This section describes in detail all the experiments carried out to
validate the proposed model and methodologies.

4.1 Dataset
In our experiments, we used the UCF-Crime dataset developed by
[34]. It consists of long untrimmed surveillance videos which cover
13 real-world anomalies: Abuse, Arrest, Arson, Assault, Accident,
Burglary, Explosion, Fighting, Robbery, Shooting, Stealing, Shoplifting,
and Vandalism. The original annotations of the dataset are at video
level. To our scope, we used the frame-level annotations provided
by [22] in UCFCrime2local. They created a training set of 210 videos
and a test set of 90 videos with 7 of the 14 original classes: Arrest,
Assault, Burglary, Robbery, Stealing, Vandalism and Normal. The
annotations are in Vatic format and we decided to consider as hard
anomalies the frames with lost flags equal to 0 and the others as soft
anomalies because the anomaly is not clearly present. All frames in
normal videos were considered normal.

4.2 Impact of Bag-of-Objects on Anomaly
Detection

The purpose of this experiment is to demonstrate how the contex-
tual information provided by the bag-of-objects have a positive
impact on the detection of anomalies. Four different models have
been trained in these experiments: a 2D-two-stream-CNN with the
use of bag-of-objects (2S-bag), a 2D-two-stream-CNN without the
use of bag-of-objects (2S-no-bag), a single flow CNN (only frames)
with the use of bag-of-objects (1S-bag) and a single flow CNNwith-
out the use of bag-of-objects (1S-no-bag).
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Training Details. As preprocessing, the images are resized to
224x224 and converted from RGB to BGR, then each color channel is
zero-centered with respect to the ImageNet dataset, without scaling.
Half of the test set videos were divided to create the validation set
to preserve the class distribution. The validation set is used together
with the early stopping technique to keep the overfitting under
control. The sampling framerate was set to 3 FPS for video segments
containing anomalies and 10 FPS for normal ones. Segmentswithout
hard anomalies were considered normal. Hard mining with α = 3
has been used, and moreover, class weights were set to 1 for normal
class and 2 for anomaly class. Adam is used as optimizer, and for
each model were initially trained only the final fully-connected
layers using a learning rate of 10−5 until reaching the lowest loss
on validation set with the patience of 5 epochs. Then the networks
were fully trained using the same methodology but with a learning
rate of 10−6. After each fully connected layer was applied a dropout
of 0.5.

4.3 Impact of Hard Mining on Anomaly
Detection

The second experiment demonstrates the effectiveness of the hard
mining technique even on binary classification problems. Two mod-
els were compared: a 2D-two-stream-CNN with the use of hard
mining (the same 2S-bag than before) and a version trained without
its use (2S-bag-no-hm). The remaining training parameters have
been left unchanged. The comparison’s fairness is guaranteed by
using a very low learning rate and early stopping, allowing the
networks to achieve optimal accuracy. Indeed, it must be considered
that with hard mining, an epoch contains 1

α of the samples of a
training epoch that do not exploit it.

4.4 Impact of Soft Anomalies on Anomaly
Detection

In this experiment, we want to demonstrate how the use of the
most ambiguous frames, which we have identified as soft anomalies,
significantly impacts the model’s performance during training. Fol-
lowing the same training guidelines of the experiment described
in the previous section, we compared the 2S-bag and 1S-bag mod-
els trained with the difference of not considering those frames in
anomalous videos that do not contain an anomaly (hard anomalies),
neither as normal frames nor anomalous frames, but simply ex-
cluding them. We will refer to the models trained with only hard
anomalies as 2S-bag-ha and 1S-bag-ha. In order to have a fair com-
parison with the previous experiments, no frames were excluded
from the test set, and those with soft anomalies were considered
normal.

4.5 Proposed Methodologies Applicability to
Alternative Models

To verify the versatility of the techniques described above, these
have also been tested on a 3D-CNN alternative (C3D-ha). 3D neu-
ral networks allow the extraction of spatiotemporal features taking
in input segments of multiple contiguous frames. The model we
tested is the C3D developed by [36] and pre-trained by the same
authors on Sport1M [20], an action recognition dataset containing

one million clips of different sports. Spatiotemporal features are
extracted from the last convolutional layer through a flattening op-
eration. These are then given in input to a fully connected classifier
analogous to the one used in Figure 1.

Training Details. As preprocessing step was only performed a
resizing of the frames to 112x112. The network takes in input seg-
ments of 16 frames. These were sampled from the original videos at
7.5 FPS (1/4 of the original framerate) to create segments of about 2
seconds like those used for pretraining. The concept of the different
sampling rates for anomalous and normal sections was interpreted
in this case using different strides: anomalous segments are sampled
with an overlap of 12 frames (a shift of 4), while normal segments
are taken with an overlap of 8 frames (a shift of 8). The training
is carried out in the same way as previously described using hard
mining, early stopping, a two-phase fine-tuning, and considering
only hard anomalies. The only difference is that segments are used
instead of frames as unitary samples.

4.6 Comparison with the State of the Art
Our best model (2S-bag-ha) has been compared with the results
obtained by [22]. The architecture they tested is a two-stream I3D
with RGB and optical flow volumes in input. In particular, in their
work, a comparison was made between (i) a model trained using
full-frames (full-I3D), (ii) a strongly supervised model trained with
ground-truth spatial annotations (oracle-I3D) and (iii) a weakly
supervised model (ws-I3D) trained using annotations made exploit-
ing the strongly supervised one. To make the comparison fair, we
retrained our model without using the early stopping, but fixing 5
epochs for the first stage of training and 2 for the second (2S-bag-
ha-no-es). In this way, it was possible to use exactly the same split
indicated in their work both in training and in testing.

4.7 Generalization Capabilities
Themain objection that can bemade to the models developed in this
work is the strongly supervised nature of the training. It is possible
to think that the models effectively recognize only the classes of
anomalies provided in training and that their performance is much
lower on classes never seen before. For this reason we verified the
generalization capabilities of the 2S-bag-ha model on the remain-
ing UCF-Crime classes that were not labeled in UCFCrime2local
and thus not used in training: Shoplifting, RoadAccident, Shooting,
Fighting, Abuse, Arson and Explosion. Although coming from the
same dataset, some of these classes of anomalies are fundamen-
tally different from those used in training and is not trivial that the
model could correctly recognize them as well. Therefore, it was
constructed a new test set containing the 450 anomalous videos
of the unlabeled classes and 150 new normal videos, all not used
during training.

5 EXPERIMENTAL RESULTS
In this section we discuss the results of the experiments previously
described.
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Model FL-AUC (%) VL-F1 (%)
2S-bag 82.6 66.7

2S-no-bag 77.6 61.5
2S-bag-no-hm 80.2 64.0
2S-bag-ha 83.7 91.0
1S-bag 78.6 74.1

1S-no-bag 75.3 58.3
1S-bag-ha 81.5 87.5
C3D-ha 83.7 69.0

Table 1: Experimental Results

Model FL-AUC (%)
full-I3D 56.1

oracle-I3D 74.7
ws-I3D 81.0

2S-bag-ha-no-es 82.4

Table 2: Comparison with the state-of-the-art

Model VL-F1(%) VL-TPR(%) VL-FPR(%)
2S-bag-ha 89.7 86.4 18.6

Table 3: Generalization Capabilities

Figure 2: ROC comparison between proposed 2S-bag-ha-no-
es model (blue) and ws-I3D (red), oracle-I3D (dashed cyan)
and full-I3D (dotted green) models presented in [22].

5.1 Evaluation metrics
As in [34] and [22] the various models were compared using the
areaunder theROC curve calculated frame by frame (FL-AUC). In
the case of the 3D-CNNmodel, the classification is considered on the
last frame of the segment as the model is intended to be used online.
It was also introduced a new metric to evaluate the effectiveness
of the models in the classification at the video-level: the video-
level F1 score (VL-F1). This metric is useful to evaluate the models’
anomaly detection capabilities with a weakly-labeled test set. The
same model can obtain different results for the two metrics. For
example, it can distinguish normal videos from anomalous ones
correctly but not normal and anomalous segments inside the same
video. It is therefore important to use both metrics to have a correct
comparison. Using the VL-F1 score, a whole video is classified as
anomalous if its sigmoidal anomaly score exceeds 0.5 at any point
and normal otherwise. Once all videos have been classified, the F1
score is calculated as:

VL-F1 =
2

1
vl -r +

1
vl -p

Wherevl-r is the video-level recall andvl-p the video-level precision.
SAS parameters have been heuristically set with: τ = 0.5, ν = 2,
UB = 7 and LB = −7.

5.2 Evaluation of Proposed Techniques Impact
on Anomaly Detection

The results of the methodologies used to enhance the model’s ac-
curacy and training’s efficiency are described below.

Bag-of-Objects. Referring to Table 1 is possible to notice how
the use of bag-of-objects has a clear impact on the model’s ability
to classify at frame-level. In particular, both two-stream and one-
stream architectures have an AUC increase of 6.4% and 4.4%: from
77.6% (2S-no-bag) to 82.6% (2S-bag) and from 75.3% (1S-no-bag) to
78.6% (1S-bag). Also, with regard to the video-level F1 score both
architectures have an increase of 8.5% and a remarkable 27.1%: from
61.5% (2S-no-bag) to 66.7% (2S-bag) and from 58.3% (1S-no-bag) to
74.1% (1S-bag). It certifies that the use of the bag-of-object has a
positive impact on the classification of the single frames and the
distinction of videos containing anomalies from normal ones.

Hard Mining. Always referring to Table 1 the impact of hard
mining on anomalous detection can be verified by comparing 2S-
bag with 2S-bag-no-hm. There is an increase in AUC accuracy of
3%, from 80.2% to 82.6%, with the use of hard mining and also the
VL-F1 score increases by 4.2%, from 64.0% to 66.7%.

Soft Anomalies. In Table 1 can also be assessed the impact of
the exclusive use of hard anomalies as positive samples. For both ar-
chitectures the maximum AUC values are reached, with an increase
of 1.3% and 3.7%: from 82.6% (2S-bag) to 83.7% (2S-bag-ha) and from
78.6% (1S-bag) to 81.5% (1S-bag-ha). But the most significant results
are the VL-F1 values with a significant increase of 36.4% and 18.1%:
from 66.7% (2S-bag) to 91.0% (2S-bag-ha) and from 74.1% (1S-bag) to
87.5% (1S-bag-ha). It means that an accurate selection of abnormal
and normal frames – so that they are completely unambiguous
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(a)

(d)

(b)

(e)

(c)

(f)

(g)

(h)

Figure 3: Qualitative results for our 2S-bag-ha model on testing videos. Orange frame windows indicate a region labeled as
anomalous, light blue regions show sigmoidal anomaly score (SAS) values, the green line shows classifier’s confidence, and
the red line shows the threshold above which the value of SAS signals the video as anomalous. (a), (b), (d) show anomalous
videos where different anomalies are fully identified by our method. (e) shows a class of anomaly not used during training but
correctly detected. (c) shows the correct response of our method to a normal video. (f) shows noise in the classification that is
correctly filtered by the SAS method. (g) and (h) show a false alarm and a false negative case.

for their use in training – leads to a general improvement of the
frame-level classification and allows a considerably better video-
level detection.

Alternative Models. In the last row of Table 1 are present the
results obtained for the C3D model. It achieves the best frame-
level AUC at 83.7% tied with 2S-bag-ha, but a noticeable lower
value of VL-F1 with 69%. It indicates that the various techniques
presented in this work can also be successfully applied to other
types of architectures and that temporal information may not be
as important in video-level anomaly detection to distinguish soft
and hard anomalies inside an untrimmed video, opening space for
future studies.

5.3 Comparative Results with the State of the
Art

Table 2 and Figure 2 involve a comparison between our model
and those presented in [22] performed using the same dataset split
and their annotations. It is possible to notice that 2S-bag-ha-no-
es has a frame-level AUC value of 1.7% greater than their best
model. The comparison becomes evenmore clear if we consider that
our model uses the entire frame, while the oracle-I3D and ws-I3D
models need spatial annotations to exploit the spatiotemporal tubes
locality. Moreover, our model exploits during training only 1

3 of the
anomalous frames and less than 1

10 of the normal frames available
in training set by using the proposed adaptive under-sampling
method. Therefore, it becomes clear how it reduces drastically the
data needed during training and increases the final accuracy since
our model trained on full-frames has a remarkable AUC increase of
46.9% compared to their model trained in the same way (full-I3D).

5.4 Generalisation Capabilities Evaluation
Referring to Table 3 are used with the video-level F1 score the values
of the video-level true positive rate (VL-TPR) and false positive rate
(VL-FPR) obtained by 2S-bag-ha on a dataset composed of 450 videos
of anomalous classes never seen before by the network plus other
150 normal videos as negative examples. The network gets a good
value of VL-F1 at 89.7%, confirming an excellent generalization
capability with a VL-TPR at 86.4%. It is also possible to notice that
the VL-FPR values are contained at 18.6%. These results demonstrate
that the network maintains almost the same levels of accuracy for
unseen anomalous sub-classes as in the identification of training
anomalies. Therefore, the network was successfully able to learn a
general representation of the problem. Finally, all this result does
not affect the models capacity to construct a generalized internal
representation of the problem even in a highly supervised scenario.

5.5 Qualitative Results
In this subsection are presented some qualitative results obtained
with the proposed model in order to evaluate its possible use in
security applications.

Anomalous Activity Recognition. Figure 3 shows 2S-bag-ha
model results for anomalous activity recognition in testing videos.
Concerning hard and soft anomalies, figures (a), (b), and (d) are some
examples of anomalous videos in which the anomalous activity has
been correctly identified. It is possible to notice the tendency of the
anomaly detector to highlight as anomalous an area greater than
that described as properly anomalous in the ground truth. This can
be seen as another evidence of the importance of distinguishing
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(a) Robbery077
(b) Burglary078

Figure 4: GradCam extracted from 2S-bag-ha streams last convolutional layers and applied to two anomalous test videos. From
right to left the images represent the optical flow calculated taking into account the apparentmovement between previous and
next frame, the GradCam applied on the optical flow, the relative frame extracted from the video and the GradCam applied
to it.

soft anomalies from both hard anomalies and normal video sec-
tions. In (a) and (b), the sections that in the ground truth have not
been labeled as anomalous (the crime is no longer visible) but are
still reported as anomalous by our method, falls within the defini-
tion of soft anomalies. In particular, in (a), the second frame does
not contain an assault but still includes an anomalous grouping
of peoples. In (b), instead, the second frame shows a man leaving
after vandalizing a bar that is now on the ground. Therefore the
consequences of the vandalism are visible even if this is no longer
ongoing. Regarding the analysis of the normal Activities and the
SAS Noise Filtering, in (c) e (f), it is possible to notice how our
SAS method correctly gives at videos that contain purely normal
events an almost zero score. The effectiveness of this method is
particularly evident when considering situations like the one in (f)
in which can filter out momentarily incorrect classifications. These
can happen because our model classifies considering individual
frames, and a particular noise or position can produce an incorrect
classification for the single frame. Thus the SAS helps in reducing
the number of false positives that would be present using only a
threshold on the classifier’s confidence while maintaining a high
true positive rate.

GradCam. For security applications, it is important to verify
the video regions that contribute most to anomaly detection to
assess the network’s decision-making process and ensure that it
has no biases. For this purpose, the GradCam method introduced
by [32] allows identifying within an image is input to a ConvNet
the regions that contribute most to the classification of a certain
class. Identifying these regions can also have practical purposes
to locate anomalies in progress, for instance, if the video takes a

wide scene. In Figure 4 the GradCam method has been applied to
2S-bag-ha. The simplicity that characterizes our model makes it
possible to identify what the network interprets as anomalous, even
in real-time. For example, both in case (a) and (b), the GradCam
highlight the arms stretching and the resulting optical flow as major
contributors to the detection. This gesture is common in almost all
classes of anomalies on which the network has been trained. We
can therefore think of combining the SAS and GradCam to create a
surveillance system that allows not only to alarm promptly in case
of an anomaly but also to highlight in real-time its position within
the video.

6 CONCLUSION AND FUTUREWORKS
This paper has proposed a deep learning approach for the real-time
detection of real-world behavioral anomalies in a video surveillance
scenario. The methodology presented deals with the complexities
and challenges of video anomaly detection: (i) the noisy and low-
quality video stream, (ii) the high computational overhead intro-
duced by the systems, and (iii) the difficulty in recognizing if action
is anomalous depending on the context. To this end, our method-
ology proposes the addition of contextual information to spatial
and motion features. We also introduce new data balancing strate-
gies and the definition of a novel sigmoidal anomaly score. The
combined use of those methodologies contributes to increasing the
anomaly detection accuracy while reducing the resources used in
training. Furthermore, the experimental results on the UCF-CRIME
dataset show how the proposed method can achieve state-of-the-
art performance by using a more lightweight architecture. The
proposed approach has a wide margin for improvements in future
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works. In fact, considering very generic classes, the contextual in-
formation given by the bag-of-object can be enriched considering
also more relevant objects for the specific anomaly detection task.
Moreover, the adaptive sampling rate technique can be made even
more effective if, for example, the adaptivity also considers the
different types of anomalies and their characteristics. Finally, the
model could be trained to distinguish soft anomalies as a different
suspicious class, using for instance, a fuzzy assignment.
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