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ABSTRACT 

This work presents the results of a simulated analysis 

concerning algorithms of self-coordination of a swarm of 

Unmanned Surface Vehicles (USV) for the mitigation of 

plastic pollution in oceans. The analysis is based on real 

scenarios provided by the Copernicus Marine Service. The 

scenario includes the localization of plastics on the sea 

surface and their movement in time based on the sea surface 

currents. A swarm intelligence algorithm is used for the de-

centralized coordination of the USV swarm. Results are 

presented on a study area located in the northern Tyrrhenian 

sea between Corsica and the Tuscan coast, in the period of 

July 2016. 

Index Terms— Swarm intelligence, evolutionary 

optimization, Unmanned Surface Vehicles, plastic pollution, 

sea. 

1. INTRODUCTION

Plastic pollution is a major source of marine debris. Many 

plastics – including polypropylene, polyethylene, nylon, 

polystyrene, polycarbonate and polyvinyl chloride (PVC) – 

are very durable; some are predicted to persist in the marine 

environment for many years. The wind and ocean current 

can bring to the accumulation over time of buoyant plastic 

in specific geographical areas so inducing serious pollution 

problems, also related to the degradation of plastic materials 

and the formation of sea-slicks and bio-films. Europe is the 

second largest producer of plastic (after China). The major 

plastic-consuming countries in the EU are Germany and 

Italy [1][2]. 

Observation and mitigation represent a fundamental step to 

marine plastics reduction. Among the most common 

mitigation techniques we mention those based on a 

removing/cleaning-up and biotechnology strategies.  

This paper focuses on the perspective use of the Albatross 

Unmanned Surface Vehicle (USV) prototype which was 

designed and presented in 2019 at the NASA Space Apps 

Challenge. In the literature, swarms of robots are 

increasingly proposed as a viable solution to mitigate the 

problem of plastic pollution in oceans. The cooperation of a 

USV swarm can sensibly increase the performances of 

cleaning dirty oceanic zones. The USV is assumed to be 

equipped with on-board sensors that allow it to identify the 

plastic debris [3]. 

In general, the cooperation of USVs can be coordinated 

either in a centralized or a de-centralized way. The 

centralized coordination asks for a human operator who 

analyses and collects information about dirty zones and 

updates the environment map of USVs. As a result, the 

swarm navigates to a new assigned dirty zone and cleans it.  

The main characteristic of a USV coordination strategy is its 

capability to be autonomous, robust, resilient, and adaptive. 

Centralized logic solutions are not effective for this purpose, 

due to the high level of complexity, design and management 

effort. In contrast, decentralized logic approaches can 

provide a USV swarm with a certain degree of autonomy 

[4]. 

This work focuses on a de-centralized coordination of the 

swarm, for investigating the use of swarm intelligence 

techniques. More specifically, two swarm intelligence 

algorithms are compared, i.e., Ant Colony Optimization 

(ACO) [5] with Evolution (ACO-E), and Stigmergy 

Flocking Evolution (SFE) [7]. ACO is a biologically 

inspired algorithm, based on ant colonies behavior. In 

contrast, SFE includes different biological cooperation 

models, inspired by chemical pheromone, olfactory and 

visual perception. Both algorithms are parametrically 

adaptive with respect to the layout, thanks to the use of 

Evolutionary Optimization. Simulation results show that the 

SFE algorithms sensibly overcomes the ACO in terms of 

amount of collected debris per month.   

A key point of the USV swarm coordination is the 

capability to provide a dynamic update of the environment 

map, according to the sea current moving the plastic debris. 

To this end, in this work the model of the Copernicus 
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Marine Service is used [5]. The model provides a stream of 

frames with the spatial distribution of floating plastics, 

based on the pattern of ocean currents. The model has been 

created from Earth Observation data in a Numerical 

Weather Prediction (NWP). 

The paper is organized as follows. Section 2 presents the 

coordination methodology based on ACO and SFE 

[7][9][10]. The study area, the dataset of the Copernicus 

Marine Service, and the experimental results are presented 

in Section 3. Finally, conclusions are drawn in Section 4.  

2. METHODOLOGY 

The methodology is developed in an exploration 

simulator which focuses on the coordination logic, assuming 

that control aspects are managed by the on-board 

technology. The obstacles and target distribution are 

recreated at a given scale, allowing the simulation of USV 

movement and collision avoidance in the environment. 

The exploration problem is modelled by discretizing the 

environment into a lattice of cells. Each cell has an area of 

0.25 Km2. The temporal unit (tick) of the simulation 

environment is set to 5 minutes. The duration of the mission 

is statically specified and corresponds to one month of 

floating plastic movement. The target dynamics is 

reproduced by using a sequence of frames with daily 

transition. The USV position and direction is dynamic and 

set according to exploration and coordination rules, which 

can be parametrically adapted by an evolutionary algorithm. 

In particular, the Differential Evolution (DE) is used as the 

evolutionary algorithm because it is more suitable for this 

class of problems (see [10] and references therein). 

Figure 1 summarizes the main steps of the procedure used to 

model the daily spatial distribution of plastics within the 

study area. The starting point of the procedure is given by a 

frame providing spatial density of plastics over sea. This 

frame is used to estimate the 2D probability density function 

to find plastics at a location (latitude, longitude) over the 

sea. A Montecarlo technique is then used to sample the 

location of plastics over sea, to generate the map with the 

target to collect, represented as red points in Figure 1-(b). 

2.1. Modelling of USV swarm dynamics 

Since the ACO algorithm is well-known in the literature, 

this section focuses on the SFE algorithm. SFE is based on 

two fundamental swarm cooperation models: stigmergy and 

flocking [6][7]. Stigmergy is used to release an attractive (or 

repulsive) stimulus while collecting (not collecting) targets. 

In the proposed computational model, a digital stigmergic 

mark is released by the drones in the environment. Figure 2 

illustrates the model of a stigmergic mark: it is a truncated 

cone with unit height, radius top and down [9]. 

  
(a) (b)

Fig. 1 - Procedure to determine the daily distribution of 

plastics: (a) spatial density of plastic provided by the 

Copernicus Marine Service; (b) vectorial map generated 

for the exploration simulator.

 

Multiple stigmergic marks can overlap, creating a 

stigmergic trail. Stigmergic trail evaporates over time. Since 

the stigmergic trail is maintained in a digital environment, it 

is instantly diffused, to immediately propagate information 

to nearby drones. 

 

 

Fig. 2 - Model of stigmergic mark [9]. 

Flocking is used to model a robust and flexible swarm 

formation. It is based on the rules of cohesion, separation 

and alignment, illustrated in Figure 3. The different rules are 

activated on disjoint regions (Figure 3a). The separation rule 

(Figure 3b) maintains a distance among flock mates for a 

better scan of the area. The cohesion rule (Figure 3c) directs

the drone to the flock center, to avoid dispersion. Finally, 

the alignment rule (Figure 3d) keeps the drone’s heading 

aligned to the average flock mates heading.  

The DE logic is summarized by the pseudocode presented in 

Algorithm 1. In the simulated scenario, the swarm Si

explores the environment where the targets are dynamically 

specified. Let K be the number of aggregated parameters. In 

DE, Si is a solution represented by a real K-dimensional 

vector called genotype pi. The overall collected plastic by 

the swarm is returned by the simulated mission and is used 

as a fitness of the solution, fi.  



 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3 - Model of flocking behavior 

DE starts with a population P(0), made by N candidate 

solutions, pi
(0), randomly generated under user-specified 

parametric constraints. At each iteration t, and for each 

genotype pi
(t) of the current population P(t), a mutant vector 

m is created by applying the mutation of randomly selected 

members. Then, a trial vector pi
* is created by crossover of 

m and pi
(t). Subsequently, the population is modified 

selecting the best fitting vector between the fitness of the 

trial vector fi
* and the fitness of the initial genotype (fi

(t)).  

 

Algorithm 1: Differential Evolution algorithm 

function differentialEvolution(USVs, Obstacles, Targets) 

t = 0; 

P(0) = initializePopulation(); 

for each genotype pi(0) in P(0) do 

  Si(0) = genotypeToSwarm(pi(0)); 

 ƒi(0) = simulateMission(Si(0), USVs, Obstacles, Targets); 

do 

 for each genotype pi(t) in P(t) do 

  m = generateMutant(P(t), pi(t)); 

  pi* = binomialCrossover(pi(t), m); 

  Si* = genotypeToSwarm(pi*); 

  ƒi* = simulateMission(Si*, USVs, Obstacles, Targets); 

 for each genotype pi(t) in P(t) do 

  if  (ƒi* > ƒi(t)) then 

   pi(t+1) = pi* ; ƒi(t+1) = ƒi* ; 

  else 

   pi(t+1) = pi(t) ; ƒi(t+1) = ƒi(t) ; 

 ƒmax(t+1) = max{ ƒ1(t+1),..., ƒN(t+1) }; 

 t = t + 1; 

while (terminationCriterion(ƒmax(t), t) = false); 

return genotypeToSwarm(pmax(t));  

 

When the termination criterion is true, i.e., the monthly 

evolution of the floating plastic is finished, the vector 

characterizing the swarm with the best fitness (i.e. the 

maximum overall collected plastic) in the current population 

is considered as the optimal swarm parameterization. The 

DE algorithm has at least two hyper-parameters: the scaling 

factor F  [0,2] from which results the mutant vector, and 

the crossover probability CR. The smaller CR the higher 

probability to produce a vector that is more similar to the 

target vector rather than to the mutant vector. 

 

3. EXPERIMENTAL RESULTS 

 

The study area covers the portion of the Tyrrhenian Sea 

between northeastern Corsica and Tuscany. Specifically, it 

is a 150.5´150.5 Km2 area, with an overall navigable 

surface of 16235 Km2. This area is often affected by the 

formation of non-permanent floating plastic islands, due to 

the characteristic sea currents [11][12]. A realistic scenario 

is simulated by using a video animation of the sea plastic 

pollution made available by the Copernicus Marine Service 

[5]. For this study, the period from 01/07/2016 till 

30/07/2016 has been selected. 

The environment and the coordination logic are 

implemented on NetLogo, a leading simulation platform for 

swarm intelligence (ccl.northwestern.edu/netlogo). The 

optimization module is implemented in Python, exploiting 

NL4Py, which is a NetLogo controller software for Python, 

for the rapid and parallel execution of NetLogo models [13]. 

Figure 4-(a) shows the pheromone clouds and the USV 

swarm tracking the floating plastic movements. 

In our study, we have set the simulator with the physical and 

technological parameters of the USV prototype designed in 

the ALBATROSS project [14]. The main characteristics of 

this drone are summarized in Table 1. 

The performances of the swarm coordination algorithm have 

been assessed by considering both ACO and SFE 

algorithms.   

Figure 4-(b) shows the performance of 20 USVs swarm, 

obtained with the two coordination strategies in the same 

simulation configurations. For each strategy, the DE 

optimization is carried out 5 times, to calculate the 95% 

confidence intervals. The results show that the SFE 

algorithm clearly outperforms the ACO strategy. 

 

4. CONCLUSIONS 

 

This paper focuses on the problem of mitigation of plastic 

pollution in oceans via a swarm of USVs. A realistic 

scenario has been simulated considering a dataset provided 

by the Copernicus Marine Service. The swarm coordination 

logic, namely SFE, is based on stigmergy and flocking, two 

bio-inspired behavioral models that steer the USVs for 

plastic collection. Moreover, the exploration and 

coordination rules has been parametrically adapted by the 

Differential Evolution algorithm in order to maximize the 

amount of plastic collected. A simulation testbed has been 

developed, using the technical specification of a USV 

prototype designed in the ALBATROSS project. 

Comparative results with the ACO algorithm clearly show 



that the SFE algorithm is more suitable for plastic collection 

task. 

Table 1 - Technical specification of the ALBATROSS 

trimaran 

USV Parameter Real value Simulated value 

cruising speed 6 Km/h 1 patch/tick 

maximum payload 6000 Kg 6000 Kg 

net capacity 33.3 Kg 33.3 Kg 

size 25 x 13 m 
0.05 x 0.026 

patches 

 

 
(a) 

 

 
(b) 

Fig. 4 – (a) Simulation of plastic collection; (b) amount of 

plastic collected by the USV swarm after the DE adaptation. 
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