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Abstract—Managing water distribution networks via pumps 

scheduling programs is a multi-objective optimization problem 

with dynamic and various site-specific challenges. Metaheuristics-

based approaches, with respect to mathematical solvers, offer 

data-driven strategies for manageable and adaptive control. Some 

evolutionary approaches are suitable for multi-criteria decision 

making and decentralized coordination on programmable logic 

controllers. This paper focuses on the development of a testbed 

and an early assessment of an approach based on NSGA-II and 

Pseudo-Weights. The experimental studies are based on a 

physically developed case study, and on a scalable case study with 

realistic water demand and source patterns. The testbed has been 

publicly released.  
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I. INTRODUCTION AND BACKGROUND 

The optimal management of Water Distribution Networks 
(WDNs) often faces various site-specific challenges: network 
topology and complexity, number of electrical pumps, 
heterogeneous water sources, availability of service reservoirs, 
local electricity tariffs for peak/off-peak periods, pumps 
maintenance cost, local hourly water demand, seasonal weather 
conditions, medium-term socio-economic context such as 
growth of population and urbanization, and so on [1].  

The task of determining the operating time of each pump, in 
order to meet the predicted water demand, and according to 
other management criteria, is known as Pump Scheduling (PS) 
[2]. Two common criteria are to reduce the pumping cost and 
maintenance, and to guarantee a cyclic sources exploitation. 
Usually, the scheduling horizon is one day, after which the same 
or a revised schedule is applied. To manage the PS task 
complexity, a WDN is partitioned into subnetworks [2]. The PS 
program provides a real-time control of sources, pumps, and 
tanks of the local distribution system, according to a decision-
making process supported by information technology [3][4]. 

In the literature, different approaches have been proposed for 
optimal PS, such as linear/nonlinear programming, dynamic 
programming, metaheuristic algorithms. It is well-known that 

metaheuristics are computationally slower than mathematical 
solvers, but are relatively easier to implement, and are capable 
of handling both real and discrete types of decision variables in 
multimodal search spaces [5]. For this reason, various 
approaches have been experimented to the PS, such as 
Simulated Annealing, Hill Climb, Ant Colony Optimization, 
Shuffled Frog Leaping, and Genetic Algorithms (GAs). Among 
them, GAs have been extensively considered [5][7][8][9][10].  

A significant design aspect is the scheme of representation 
of PS, affecting the size and complexity of the decision space: it 
can be an implicit scheme (e.g., expressed in terms of tank level-
controlled triggers) or an explicit scheme (e.g., expressed in 
terms of time-controlled triggers).  

Although some researches model the PS as a multi-objective 
optimization problem [5][7], most of them find one particular 
Pareto-optimal solution at a time. Thus, for multiple solutions, 
the GA has to be applied multiple times. In order to support a 
more flexible and adaptive decision making, this research 
focuses on the ability of some GAs to find multiple Pareto-
optimal solutions in one single simulation run [5]. In essence, 
since GAs work with a population of solutions, it can be 
extended to maintain diverse sets of solutions. In Nondominated 
Sorting GA (NSGA)[5], there are representative solutions 
(called “non-dominated”) that are superior or equal to the others 
(called “dominated”), with respect to all objectives. In NSGA, 
the selection operator works differently than in conventional 
GA: the fitness assignment, based on dummy values, allows 
multiple optimal points to co-exist in the population.  

The choice of one solution over the others requires a 
decision-making process. One typical decision-making is to 
scalarize the vector of objectives into one objective, via a weight 
vector. However, the obtained solution largely depends on the 
weights, and this sensitivity makes the determination of such 
parameters expensive. A method to reduce the parametric 
sensitivity of decision-making is to move from the space of 
solutions to another space, simpler and more manageable from 
the human decisor. In this paper, the pseudo-weight method is 
used, in which a candidate solution is represented by a calculated 
weight for each objective. In the normalized pseudo-weight 
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space, the best solution can be identified by assigning a target 
pseudo-weight vector expressing the relative importance among 
the objectives. 

The paper is structured as follows: Section II formally 
describes the methodology. Section III illustrates the case 
studies. Section IV draws the conclusions. The main 
contributions of this paper are the following: (i) to propose a 
multi-objective optimization for water distribution networks 
based on NSGA-II and Pseudo-Weights; (ii) to show how 
different decision-making strategies can be easily compared; 
(iii) to develop and publicly release a testbed; (iv) to outline 
future developments of this research. 

II. METHODOLOGY 

Fig. 1 illustrates a reference scenario of water distribution. 
Let us consider N tanks, with related pumps  !, i = 1, … N. Each 
pump with a binary (on/off) command to supply the main tank 
with a constant flow "! . A pump behavior is specified via an 
hourly scheduling program in a daily horizon, imparted via a 
relay,  !(#) $ {0,1}, t = 0, … 23. Each tank is supplied by an 
external source %!(#). The total daily flow of the external sources 
is assumed to be sufficient to cover the total daily water demand 
at the main tank.  

Let &!(#) be the current volume of the i-th tank, measured 
via a sensor. Let &'(#) be the main tank volume. The main tank 
is equipped with M independent output valves having constant 
flow, to supply the water demand *+(#), j = 1, …M. On the 

figure top, a Programmable Logic Controller (PLC) solves the 
PS problem, by taking the expected daily water demand {*+(#)} 

and the tank volumes {&!(#)} as inputs, and providing the PS 
solution as an output. 

 

Fig. 1. Illustration of a reference scenario of water distribution 

With the explicit scheme, the solution is specified as a 
sequence of 24 binary commands per pump,  !("). With the 
implicit scheme, the solution is a pair of thresholds volumes 

(#!
$%, #!

$&&
): initially the pump is turned off; when the level is 

under #!
$&&

 / upper #!
$% , then the pump is switched off / on, 

respectively.  

The optimal PS is represented as a multi-objective 
optimization problem with three objective functions to 
minimize: (1) daily pumping energy cost, (2) daily number of 
pump switches, (3) daily volume surplus/deficit of the main 
tank. Table I summarizes the motivation/description of each 
objective, whereas Equations (1-3) define them formally.  

TABLE I.  DEFINITION OF EACH OBJECTIVE TO OPTIMIZE    

Objective Motivation/description 

Total daily pumping 
cost (FPC) 

The pumping energy cost is directly 
proportional to the pump water flow (l/hour). 

Total daily number of 
pump switches (FSW) 

The number of pump switches is a measure 
of mechanical wear. 

Daily volume variation 
of the main tank (FΔV) 

It is the absolute difference between the 
initial and final main tank volume. It 
measures the acyclicity of the process. 

 !" =##$% & '%()*
+,

-./

0

%.1
 (1) 

 23 =##|'%() 4 5* 6 '%()*|
++

-./

0

7.1
 (2) 

 89 =#:#$% & '%()*
0

%.1
6#;<()*

>

?.1
@

+,

-./
 (3) 

Three types of constraints are also imposed on the problem: 
(4) daily water availability, (5) lower tank volume, (6) upper 
tank volume. Table II summarizes the motivation/description of 
each constraint, whereas Equations (4-6) define them formally. 

TABLE II.  DESCRIPTION OF EACH CONSTRAINT    

Constraint Motivation/description 

Daily water 
availability 

The total daily water supplied by external sources is 
greater than or equal to the total daily water demand. 

Lower tank 
volume 

The tank volume cannot be lower than a predefined 
threshold, under which the pump is switched off. 

Upper tank 
volume 

The tank volume cannot be higher than a predefined 
threshold, over which the water surplus is lost (water 
overflow). 

To minimize the objective functions (1-3) under the 
constraints (4-6), the constrained NSGA-II [11] is used. 
Specifically, NSGA-II is an evolutionary algorithm for multi-
objective problems, based on the notion of dominancy between 
solutions. Solution x dominates y if none of objectives in x is 
worse than in y and at least one objective in x is better than in y 
[11]. At each generation, the population of PS solutions is 
divided into the feasible and infeasible sub-populations, 



according to the total constraints’ violation, and then the feasible 
population is ranked based on the notion of dominancy.  
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The Pareto fronts of l levels are formed, the infeasible 
chromosomes are stored in front l+1. The crowding distance 
between chromosomes is also considered to preserve diversity. 
The parent selection is based on a combined criterion: total 
constraint violation, non-domination rank and crowding 
distance. After obtaining a set of non-dominated solutions, a 
single solution has to be chosen for implementation. 

The decision-making approach used is based on pseudo-
weights [12]. For each o-th objective function, a pseudo-weight 
of a solution is calculated as follows: 

DE = (FE A FE)G(FE A FE)H (FI A FI)G(FI A FI)%I',  (7) 

where FE and FE are the maximum and minimum values of the 

o-th objective function, respectively. In (7) the sum of all 
elements wO of the vector is forced to one. Thus, the pseudo-
weight vector represents a relative importance of each objective 
function for the solution. This means that solutions that are 
closer to the minimum objective value have a higher weight 
value for that objective. To accomplish different strategies, the 
decisor establishes different target pseudo-weight vectors. In 
the reference scenario, the following four different strategies 
and related targets have been considered: (a) balanced: (1/3, 
1/3, 1/3); cost-saving: (.9, .05, .05), switch-saving (.05, .9, .05), 
volumes-cyclicity (.05, .05, .9). For each strategy, the best 
solution is found in the space of pseudo-weights, as the solution 
with the closest target pseudo-weight vector. 

III. CASE STUDIES 

In order to assess the effectiveness of the proposed approach, 
a simulation test bed has been developed for the modeling and 
execution of pilot case studies. The testbed is based on a recent 
multi-objective optimization framework supporting a variety of 
approaches [13]. A hydraulic simulation model has been 
developed in order to support the features illustrated in Fig. 1. 
The overall testbed has been publicly released as a GitHub 
repository [14]. To extend the features of the hydraulic 
simulator, as a future task, the testbed could be integrated with 
the WNTR framework, which contains the EpanetSimulator and 
the WNTRSimulator [15].  

To understand the potential of the proposed approach, this 
Section shows an experiment on an interpretable pilot case study 
of the reference scenario, as well as another experiment on a 
scalable case study. 

A. Interpretable case study 

This first case study is based on a comparative analysis of 
implicit and explicit schemes across four different strategies. 
The case study is intentionally small to allow an easy 
interpretation of the scheduling results. It uses N=2 pumps and 
M=2 valves for demand. It has also been physically developed 
in a hydraulic lab as a prototype, using a Raspberry PI© 
programmable controller, for the purpose of integration and life-
cycle testing. 

Specifically, the following hyperparameters have been set in 
the optimization framework: population size: 100, number of 
generations: 1000, crossover rate 0.9, selection: binary 
tournament, and mutation rate = 1 / chromosome length (48 or 4 
genes, in case of explicit or implicit scheme, respectively). The 
following parameters have been set in the hydraulic simulator, 
according to the physical prototype (volumes are in l, flows in 
l/h):  ! = 30," # =  $ = 14,  ! = 10,  # =  $ = 4,  !(0) =

30,  #(0) =  $(0) = 4, %# = %$ = 3. Fig. 2 shows the water 
demand. For the sake of simplicity/interpretability, d1=s1 and 
d2=s2.  

Fig. 3 shows the optimal PS and simulation results with the 

explicit scheme and strategies (a) balanced, (b) cost-saving, (c) 

switch-saving, (d) volumes-cyclicity. Fig. 4 shows the results 

generated with the implicit scheme. As expected, Fig. 3a and 

particularly Fig. 3d show a better volumes-cyclicity with 

respect to Figures 3b-c, which is consistent with the 

corresponding strategies. The volumes-cyclicity is better 

achieved with the implicit scheme: in Figures 4a-d, FΔV is less 

than or equal with respect to the corresponding Figures 3a-d. In 

contrast, the cost-saving is better with the explicit scheme: in 

Figures 3a-d, FPC is less than or equal with respect to the 

corresponding Figures 4a-d. The switch-saving is generally 

better with the implicit scheme, except if cost-saving is the 

preferred strategy: note in Fig. 4b that pump p1 is characterized 

by frequent switches. Such switches are caused by the very 

close switching thresholds,  !
"##

$  !
"%, which results from the 

cost-saving strategy. In a balanced strategy, the implicit scheme 

is more effective. 

Overall, with respect to the explicit scheme, the implicit 

scheme always achieves minimum (optimum) values of FΔV, as 

well as of FSW except for the cost-saving strategy. On the other 

hand, the FPC value achieved via the implicit scheme is equal or 

higher to the corresponding value achieved via the explicit one.  

 

Fig. 2. Water demand, equal to the external sources s1, s2. 



 

(a) FPC :136, FSW :8, FΔV :9.5 

 

(b) FPC 112, FSW 8, FΔV 18.5 

 

(c) FPC 120, FSW 6, FΔV 15.5 

 

(d) FPC 152, FSW 12, FΔV 3.5 

Fig. 3. Optimal PS and simulation results, with explicit scheme and strategies 
(a) balanced, (b) cost-saving, (c) switch-saving, (d) volumes-cyclicity. 

Hence, the implicit scheme tends to find better solutions 
from the point of view of mechanic wear and process cyclicity, 
at a cost that in some cases is higher. In this pilot case study, the 
implicit pump scheduling scheme can be appreciated for its 
effectiveness with the balanced, switch-saving, and volumes-
cyclicity strategies, whereas the explicit scheduling can be better 
exploited to manage the cost-saving strategies. 

B. Scalable case study 

In order to evaluate the effectiveness of the proposed 
approach when varying the problem size, in this case study the 
considered problem complexity differs by one order of 
magnitude with respect to the previous one. Specifically, N=20 
pumps/sources and M=20 valves for demand have been used. 
Half of the water production (i.e., 10 sources) is based on natural 
sources, whereas the other half is based on water desalinization 
technology. The natural sources are characterized by a daily 
constant supply. The average flow is si=0.8, with 10% variation 
among sources. The artificial water production is based on a 
combined water desalination and electricity generation system, 
a sustainable technology in which a humidification-
dehumidification (HDH) process is integrated with 
photovoltaic-thermal modules [16].  
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Fig. 4. Optimal PS and simulation results, with implicit scheme and strategies 
(a) balanced, (b) cost-saving, (c) switch-saving, (d) volumes-cyclicity. 

 

 

Fig. 5. Hourly profiles of water flow for HDH-based sources si (adapted from 
[16]) 

Fig. 5 shows the hourly profiles of water flow for some 
representative months of the year. In the scenario, the production 
in July has been considered, with 10% variation among sources. 



 

Fig. 6. Water demand patterns di, for three representative types of consumers 
(adapted from [17]) 

The 20 water demand patterns are based on a mid-size city, 
and intended for residential (5 valves), industrial (5 valves) and 
commercial/institutional (10 valves) nodes [17]. Fig. 6 shows 
each type of pattern. A 10% variation among demands of the 
same type has been considered. 

In this scenario, the implicit representation scheme has been 
used, with each pump controlled by a lower and an upper bound. 
As a consequence, each chromosome is made by 2N = 40 genes. 
The following hyperparameters have been set in the 
optimization framework: population size: 100, number of 
generations: 200, crossover rate 0.9, selection: binary 
tournament, and polynomial mutation with rate = 1/40 
(chromosome length). The following initial state parameters 
have been set in the hydraulic simulator (volumes are in l, flows 
in l/h):  ! = 200 , " # = 50 ,  ! = 20 ,  # = 5 ,  !(0) = 100 , 

 #(0) = 10, $# = 1. 

Table III summarizes the PS determined via different 
strategies. For the sake of readability, the switching bounds have 
been rounded to the nearest integer. In Table III the best value 
for each objective is represented in bold style. In addition to the 
strategies previously used, the “water-greedy” strategy has been 
considered. This new strategy is statically pre-determined by a 
unique objective: to continuously save as much water as 
possible, by keeping all tanks full. This single-objective strategy 
has been introduced to show that a multi-objective strategy in 
general is more effective. 

TABLE III.  PS FOR DIFFERENT STRATEGIES, WITH IMPLICIT SCHEME   

Strategy FPC FSW FΔV lower/upper switching bounds 

determined ( !
"#|"$$

) 

water-
greedy 

450 46 94 5|50 5|50 5|50 5|50 5|50 5|50 5|50 5|50 
5|50 5|50 5|50 5|50 5|50 5|50 5|50 5|50 

5|50 5|50 5|50 5|50 

balanced 282 33 37 11|2 6|43 7|43 11|4 6|44 44|25 13|11 
13|3 6|8 44|15 35|43 9|7 45|38 10|34 

48|17 44|22 15|19 7|43 10|48 8|48 

cost-
saving 

260 51 59 10|42 7|42 6|44 10|7 7|44 40|44 14|11 
7|41 7|47 44|14 35|27 43|4 44|27 8|33 

48|18 49|26 9|19 7|44 11|45 8|47 

switch-
saving 

268 18 51 10|2 6|31 41|43 12|1 6|43 44|25 6|30 
13|2 6|10 43|15 12|40 10|4 45|38 11|4 
47|17 46|22 15|20 12|44 12|48 20|48 

volumes-
cyclicity 

290 55 29 10|1 11|45 39|40 12|1 13|2 39|26 7|20 
14|13 8|9 10|14 15|42 11|7 6|38 11|5 

49|46 48|10 9|19 31|43 13|45 7|46                                    

 

Formally, the water-greedy strategy is characterized by a PS 

statically determined with %&
'( = %&  and %&

'))
= %& : it means 

that the pump is switched on as soon as the level is below the 
maximum. In practice, the tank is almost always full. 

As a result, the table shows what follows: (i) the volumes-
cyclicity strategy tries to achieve the cyclicity via a high number 
of switches and pumping cost; (ii) the switch-saving strategy 
minimizes switches at the expense of cyclicity and of some 
pumping cost; (iii) the cost-saving strategy minimizes cost via 
high switches and high cyclicity; (iv) the balanced strategy 
achieves a good volumes cyclicity and good pumping cost. Not 
surprisingly, it is apparent from Table III that the water-greedy 
strategy is very expensive in terms of pumping and switching 
costs, as well as poorly volumes-cyclic. In contrast, the other 
strategies are very effective in achieving the expected 
optimization. It can be also observed a high variety of switching 
bounds provided by each strategy. This reveals the fact that the 
search space is inherently complex.  

IV. CONCLUSIONS 

In this paper, the development of a testbed that simulates 

water distribution networks, and enables the evaluation of in-

node decision making, is presented. The purpose is to introduce 

a novel design perspective of multi-objective optimization 

systems for water distribution, offered by NSGA-II and 

Pseudo-Weights. An interpretable (i.e., small) case study and a 

scalable (large) case study have been discussed, to show the 

effectiveness of the proposed approach, by comparing different 

strategies. 

Further research is necessary to compare different 

metaheuristics on different and large scenarios. To achieve 

significant results, future work will focus on further 

experimentation and investigation, as well as on further 

integration with advanced hydraulic simulator. 
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