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A B S T R A C T

Target search aims to discover elements of various complexity in a physical environment, by 
minimizing the overall discovery time. Different swarm intelligence algorithms have been pro-
posed in the literature, inspired by biological species. Despite the success of bio-inspired tech-
niques (bio-heuristics), there are relevant algorithm selection and parameterization costs 
associated with every new type of mission and with new instances of known missions. In this 
paper, evolutionary optimization is proposed for achieving significant improvements of the 
mission performance. Although adaptive, the logic of bio-heuristics is nevertheless constrained by 
models of biological species. To generate more adaptable logics, a novel design approach based 
on hyper-heuristics is proposed, in which the differential evolution optimizes the aggregation and 
tuning of modular heuristics for a given application domain. A modeling and optimization testbed 
has been developed and publicly released. Experimental results on real-world scenarios show that 
the hyper-heuristics based on stigmergy and flocking significantly outperform the adaptive bio- 
heuristics.   

1. Introduction and motivation

Multi-robot systems have a great potential in a variety of critical missions, such as surveillance, environmental monitoring, search
and rescue. A relevant issue is the coordination of swarms for an increasing number of robots in order to achieve pre-defined global 
objectives. Regarding this issue, today biological swarms are much more effective with respect to the artificial counterpart. Consid-
ering that in complex or open environments robots cannot exploit static information on layout and targets locations, their cooperation 
is fundamental for an efficient target discovery: the key problem is how to specify the individual robot behavior for an effective 
interaction at the swarm level. 

A target search mission is usually organized into environmental exploration, i.e., to search targets, and targets resolution, i.e., to collect 
sufficient target information. In the literature of biological models, a fundamental strategy of exploration is carried by ants. While on 
the move, ants deposit in the terrain a chemical substance called pheromone. As an example, in Ant Colony Optimization (ACO) [1] 
artificial ants release pheromones while exploring the environment to temporarily mark the visited places. Different types of 
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pheromone, related to diverse meanings, enable ants to make different decisions. Digital versions of pheromone are commonly used to 
orientate robots’ exploration [2]. Robots move according to the sensed pheromone; specifically, a robot begins to coordinate the 
resolution of the target detected during exploration, by attracting other robots towards the position indicated by the pheromone. When 
the recruited robots are sufficient in number, they perform the target resolution. In the literature, three major bio-inspired meta-
heuristics are considered for recruitment: (i) the Firefly-based Team Strategy (FTS) [3], an algorithm derived from swarms of fireflies; 
(ii) Particle Swarm Optimization (PSO), modelled from schools of fish and flocks of birds; (iii) Artificial Bee Colony (ABC), based on 
honey bees [4]. The problem of coordinating swarms of robots has received attention by many research areas, due to its potential 
impact on real-world applications. Swarm coordination strategies can be divided into two categories. Explicit coordination is based on 
the direct exchange of messages between robots, according to a detailed orchestration among swarm members [5]. This many-to-many 
communication strategy causes a poor performance of large swarms of robots. In contrast, with implicit coordination each robot makes 
simple behavioral decisions, based on information gathered through its indirect perception mediated by an environmental mechanism. 
Although the single piece of information obtained by perception is not completely accurate, the robustness of the swarm can be 
sensibly improved by the collective contribution [5]. 

Despite the success of bio-inspired techniques (bio-heuristics), there are relevant algorithm selection and parameterization costs 
associated with every new type of mission and with new instances of known missions. In this paper an evolutionary optimization is 
proposed to automate the tuning of the bio-inspired coordination for target search. Experimental results on real-world scenarios reveal 
a significant improvement of the mission performance after optimization. 

Although adaptive, the logic of bio-heuristics is nevertheless constrained by models of biological species, and then, for example, it 
can be neither modularised nor aggregated. To overcome these limits, a novel design approach based on hyper-heuristics (HH) is 
proposed. It is a search methodology that automates the combination of modular heuristics to generate more adaptable logics: 
fundamental behavioral components for many biological swarms are aggregated and tuned in a unique and continuous search space. 
Two fundamental swarm behavioral components are considered: stigmergy and flocking. Stigmergy is used to release an attractive – or 
repulsive – stimulus when detecting the presence/absence of a target during exploration. Multiple stimuli can overlap, creating a 
stigmergic trail which, in turn, evaporates over time. As a result, stigmergy creates a kind of context-aware memory of the swarm [6]. 
Flocking is used to model a robust and flexible swarm formation. It is based on the rules of cohesion, separation and alignment [2]. 
Depending on the type of mission and on the environment layout, flocking of different sizes and flexibility can be adaptively modelled. 

The Differential Evolution (DE) algorithm optimizes the aggregation and tuning of the heuristics on a unique search space and, 
consequently, an efficient heuristics hybridization is generated for a given application domain. DE is a population-based metaheuristic 
optimization algorithm, based on computational mechanisms of biological evolution, such as reproduction, mutation, recombination, 
and selection of solutions. DE can tackle non-linear and complex optimization problems, requiring just the objective function values. A 
modeling and optimization testbed has been developed and publicly released [7]. Experimental results on real-world scenarios show 
that the proposed approach, called SFE because it is based on Stigmergy, Flocking, and Evolution, significantly outperforms the 
adaptive bio-heuristics. 

The paper is structured as follows. Section 2 covers the related work. In Section 3 the design of the proposed solutions is formally 
discussed. Testbed and scenarios are detailed in Section 4. Section 5 is devoted to experimental setup and results. Finally, in Section 6 
the conclusions are drawn. 

2. Related work

2.1. Bio-inspired swarm robotics 

In the literature, many algorithms proposed for modeling swarms of robots are inspired by biological systems. In particular, so-
lutions based on insect colonies manifest interesting properties such as local control and communication, self-organization and 
emergence of global behavior [1, 3]. For instance, ants release attractive pheromone trails as a medium for self-organization to mark 
and reinforce their most frequent paths. Coordination strategies for robots based on chemical trails have been experimented; for 
instance, in Fujisawa et al. [8], ethanol trails have been used by robots as a medium to deposit and follow. However, chemical trails can 
cause problems for environmental impact, maintenance costs, control of transmission speed and range. For this reason, non-chemical 
media are more effective [9]. Masár et al. [10] have proposed a variant of the PSO algorithm for environment exploration. Another 
significant bio-inspired algorithm is called Artificial Bee Colony (ABC): it is based on the food foraging process of honey bees. ABC 
variants have been used to coordinate robotic systems [11]. Another well-known algorithm is the Firefly-based Team Strategy (FTS), 
proposed by Yang [3] and based on the flashing behavior of fireflies. In this paper FTS, PSO and ABC will be considered as a reference 
for swarm coordination in target search missions. For an extensive review, the interested reader can refer to [5, 12]. 

Bio-inspired techniques, albeit provided with a certain variety of approaches, are still not organized as an operational framework: 
design and setting costs associated with every new type of mission and with new instances of known missions are a major drawback. 
The major difficulties are due to the lack of reliable guidance on how to select the algorithms and the parameters in different situations. 
When applied to real-world problems, the method tends to become bespoke and problem-specific, characterized by expensive 
development and maintenance. For this purpose, a promising research direction is called algorithm configuration, whose goal is to 
automatically determine the appropriate parameters values for an algorithm. The goal can be considered as a search problem in the 
configuration space, in which the objective function measures the algorithm performance over a benchmark [13]. Another approach is 
called parameter control, which performs an online tuning of the algorithm parameters at execution time [14]. To automate the tuning 
of bio-inspired methods for target search is a challenge in the field [15]. For this purpose, in this paper evolutionary optimization is 
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adopted. 

2.2. Hyper-heuristics 

Although adaptive, the logic of bio-heuristics is nevertheless constrained by models of biological species and can be neither 
modularized nor aggregated. To overcome these limits, a novel design approach based on hyper-heuristics (HH) is proposed in this 
paper. It is a search method that automates the combination of modular heuristics to generate more adaptable logics. In [16] Burke 
et al. have presented a unified classification and definition of HH able to capture the research work in the field. They define HH as a 
search method or a learning mechanism to select or generate heuristics solving search problems. Specifically, in a learning HH a 
feedback is given from the search process. In online learning HH the learning occurs while solving the problem, whereas in offline 
learning HH knowledge is gathered from training instances and modelled as rules or programs. Considering the type of search space, 
the heuristic selection chooses or selects predefined heuristics, whereas the heuristic generation generates new heuristics from modular 
components. Both search paradigms can be further divided into perturbative, when adjusting full candidate solutions by modifying their 
components, and constructive, when iteratively extending partial candidate solutions with missing components. Hybrid approaches are 
also used [17]. In particular, Garrido et al. [17] have solved the dynamic vehicle routing problem via an evolutionary HH. Their 
framework is based on a combination of both constructive and perturbative HH, and is evaluated on a large and complex set of 
problems. Results are competitive with respect to well-known methods of the literature. The HH approach aims to provide a general 
method for many application domains, rather than a better solution to a specific problem. Indeed, the search space of HH is a space of 
new heuristics, rather than a space of solutions. The difference is that a new heuristic can be potentially reused for solving many 
problem instances. In the literature, a well-known method for generating heuristics is genetic programming [18]. It is an evolutionary 
computation evolving a population of computer programs. Genetic programming can be considered as an HH if the evolved programs 
are heuristics. For example, in [19] Geiger et al. have illustrated the major motivations to automatically generate heuristics in pro-
duction scheduling. The research in the field has shown also that successful components can be derived by the available human-created 
heuristics [20]. Another research field, related to perturbative heuristics, is called adaptive memetic algorithms. It is an evolutionary 
algorithm characterized by local searchers called memes, adaptively selected/generated during the search [21, 22]. 

2.3. Evolutionary algorithms 

Evolutionary algorithms (EAs) are population-based metaheuristic optimization algorithms, based on computational mechanisms 
of biological evolution, such as reproduction, mutation, recombination, and selection of solutions. EAs can tackle non-linear and 
complex optimization problems, requiring just the objective function values. Nevertheless, the performance of an EA depends, in turn, 
on hyper-parameter settings: for instance, probabilities of mutation and crossover, population size, and number of generations. 
Parameter tuning methods have been proposed, such as deterministic, adaptive and self-adaptive [22]. Here, the Differential Evolution 
(DE) algorithm has been considered: it is an evolutionary algorithm for optimization in continuous spaces. The performance of the DE 
depends on the mutation control parameters, especially when the problem is complex [23]. To balance the convergence (fitness 
evaluations) and the reliability (optimum’s globality), ranges of parameters values have been studied. The most popular variant of DE 

Fig. 1. Environment: drones, targets, attractive and repulsive pheromone, obstacles.  
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is called “DE/rand/1/bin”, where “DE” stands for Differential Evolution, “rand” means that the individuals selected to compute the 
mutation values are randomly chosen, “1” is the number of pairs of individuals chosen for mutation, and “bin” denotes the binomial 
crossover. Another variant is based on the best selection strategy: it is called “DE/best/1/bin”, because the perturbing individual is 
generated from the best population member. It is known that “DE/rand/1/bin” is slow but robust compared to the strategies based on 
the best member. Among the most sensitive parameters, the Crossover Rate (CR) is a probability of mixing between mutant (donor) and 
target vectors of the current population [24]. Low/high CR values are good for uni/multi-modal problems. Good convergence can be 
achieved with large CR values. Recommended CR values are in [.2, .9]. The differential weight, F ∈ [0, 2] controls the mutant vector: 
large F values allow escaping from local optima; low values cause premature convergence; F ≤ 1 determines a fast and reliable search 
process. As a result, F is usually set in [0.4, 0.9]. The population size (NP) is another important parameter. In the literature, there is a 
lack of sufficient justifications and a lot of conflicting motivations about the manual parameter tuning of DE. To solve the issue, in this 
research a grid search technique is used. 

3. From adaptive bio-heuristics to hyper-heuristics

In this section, the exploration and recruitment problems are formalized. The FTS, PSO and ABC bio-heuristics are then defined,
together with their user-defined parameters. Subsequently, the adaptive variant of the bio-heuristics is presented. Finally, a different 
solution, based on hyper-heuristics, is proposed. 

3.1. Environment and problem statement 

Fig. 1 shows an ongoing scenario of target search. Let us consider a swarm of mobile robots, or drones, deployed in an exploration 
area, in order to search and process the targets cooperatively. Let us assume that targets number and locations are unknown. In Fig. 1, 
obstacles are represented in grey color. Drones are depicted as green arrowheads, and undetected/detected targets as red/yellow 
points. Finally, an attractive/repulsive pheromone is represented as white/pink continuous intensity. The swarm is also divided into 
flocks: flexible, dynamic and autonomous groups communicating between themselves (flockmates) and self-organizing, splitting 
around obstacles, rejoining, and avoiding collisions with each other. Moreover, an attractive pheromone released by flockmates 
creates a short-medium term potential to compact the flock where multiple targets are detected. In contrast, a repulsive pheromone 
helps the drones to avoid multiple exploration of the same zone whereas new targets are not detected. Finally, olfactory habituation is 
another bio-inspired form of memory: when exposed to the maximum intensity of attractive pheromone, the sensing saturates and 
becomes unable to sense for a while, to leave the saturated area more efficiently. 

More formally, let be:  

• W⊂R2, exploration area; in the computerized model it is actually a discretized area in N2;
• R, set of robots of the autonomous swarm, with NR = |R|;
• NR

min, number of robots needed to process each target;
• RR, set of robots recruited to process a target, RR⊂R;
• T, set of all targets, with NT = |T|;
• F, set of found targets, F⊂T, with NF = |F|;
• FP, set of targets found and performed, FP⫅F, NFP = |FP|;

Fig. 2. Target search mission: UML activity diagram with the overall workflow  
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• FHRk, set of help requests, i.e., found targets received by the k-th robot, FHRk⊂F⊂T.

In a target search mission, a robot can assume two major roles: explorer and coordinator [25]. The purpose of exploration is to
discover new targets, whereas the purpose of coordination is to recruit the necessary number of follower robots to process the 
discovered target. Fig. 2 shows a UML activity diagram with the overall workflow carried out by each robot involved in a target search 
mission. The process begins at the black start circle, and ends at the white circle with a cross inside. The major activities are represented 
by bold round-cornered rectangles, and are connected by the following two core flows:  

1) explore → coordinate → perform
2) explore ⇄ follow → ready → perform

Each activity is defined as a work flow of generic tasks. The implementation of a task can vary depending on the bio-inspired
approach (e.g., ACO for exploration; FTS, PSO, and ABC, for recruitment [25]). 

It follows the description of each activity. Explore: the robot explores the area for discovering targets; first, it is oriented by its
perception of a medium depending on the biological model; then, it moves to the next cell; if a new target is discovered, it coordinates; 
otherwise it dissuades from following its recent path by releasing some anti-stimulus; finally, if no recruitment request arrives, the 
robot continues to explore, otherwise it follows. Follow: the robot is recruited by a coordinator robot; it selects one of the manifest 
targets, then turns to it, and moves to the next cell; when the manifest target is detected, the drone waits for coordination (ready). 
Coordinate: the robot becomes a coordinator when it detects a target, and after it starts to recruit the needed robots; the recruitment is 
based on stimuli depending on the bio-inspired approach. Ready: once reached the target, a recruited robot waits until the coordinator 
delivers the authorization to perform the target. Perform: the target is processed by all recruited robots; then, a stop criterion is checked, 
e.g. a maximum time or a maximum percentage of targets found. 

The next sections will formalize the major tasks for the reference bio-inspired approaches [25]. 

3.2. Exploration based on the ACO bio-heuristic 

During the explore activity, a repulsive pheromone is deposited on the visited cells without targets, as an anti-stimulus, in order to 
temporarily mark them. The structure and dynamics of the repulsive pheromone model is derived from ACO [1, 25]. Formally, the 
amount of pheromone deposited by the k-robot located at (xt

k, yt
k) ∈ W at iteration t, on the cell c located in (x, y) is given by: 

Δφt
k,c= {

Δφ0e
− rkc

a1 −
ε
a2

if rkc ≤ rP

0 otherwise
(1)  

where rkc is the Euclidean distance of the k-th robot from the cell c, Δφ0 is the maximum quantity of pheromone, released on the robot 
location, ε ∈ (0, 1) is a heuristics-based value, and a1 and a2 are two sizing constants. The quantities of pheromone released by many 
robots in a cell c are summed. The pheromone quantity that evaporates in the cell c at step t is: 

ξt
c = ρφt

c (2)  

where φt
c is the pheromone quantity on the cell c at iteration t, whereas ρ is the rate of evaporation: 

ρ = (t − tv)ERTU% (3)  

in which tv is the last time the cell was visited, t is the current time, and ERTU% (Evaporation Rate Time Unit) is the coefficient of 
evaporation rate per unit of time spent. 

Given the pheromone evaporation over time and the diffusion of it over the distance, the pheromone amount in the cell c at time t is: 

φt
c = φt− 1

c − ξt− 1
c +

∑NR

k=1
Δφt

k,c (4) 

Each k-th exploring robot located at cell ct
k perceives the pheromone released into the neighbor cells N(ct

k), and has a probability to 
move to cell c ∈ N(ct

k): 

p
(
c
⃒
⃒ct

k

)
=

(
φt

c

)ψ ( ηt
c

)λ

∑
b∈N(ct

k)
(φt

b)
ψ
(ηt

b)
λ, ∀c ∈ N

(
ct

k

)
(5)

where (φt
c)

ψ is the pheromone level in cell c at time t, (ηt
c)

λ is a heuristic variable, ψ and λ are two constant quantities. According to the 
exploration based on ACO, the k-robot moves to the cell c determined by: 

c = min
[
p
(
c|ct

k

)]
(6)  

in other words, it moves to the less frequented or unexplored areas. 
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3.3. Coordination based on the FTS bio-heuristic 

FTS is modelled on the flashing-based coordination of fireflies, which communicate variating light intensity and attractiveness [3]. 
The firefly brightness is modelled by an object function, whereas its attractiveness is proportional to the brightness. More formally, 
given two fireflies i and j, located at xi and xj, respectively, the attractiveness function β of the firefly j is: 

β = β0e− γd2
ij (7)  

where dij is the Euclidean distance, β0 is the maximum attractiveness, and γ is an absorption coefficient. A firefly i which is attracted by 
a brighter firefly j moves as follows: 

xt+1
i = xt

i + β
(

xt
j − xt

i

)
+ α

(

σ −
1
2

)

(8)  

where on the right there is a randomization term: α is the randomization parameter and σ is a scaling factor, usually set to 1. Good 
parameter settings are needed for achieving good convergence and stability [3]. 

Attraction begins when a robot becomes a coordinator: the coordinated robot xi move to target (coordinator xj) according to (8). If 
subject to many requests, the robot follows the brighter target located in a threshold distance. If more targets are found, the 
randomization term in (8) avoids that the recruited robots move to the same target. A further constraint for being coordinated is dij ≤

(rW + Δ), where rW is the communication range between robots, and Δ is a perturbation coefficient. Thus, the robot i switches to the 
exploration task if it becomes too far from its target j. 

3.4. Coordination based on the PSO bio-heuristic 

PSO is an optimization technique modelled on flocks of birds. For each i-th "particle", moving with speed vt
i and position xt

i in the 
search space, the new position is calculated by: 

xt+1
i = xt

i + vt+1
i (9)  

where vt+1
i is the speed in unit time, calculated according to the target positions xj, over all its neighbors: 

vt+1
i = ωvt

i + r c
(
xj − xt

i

)
(10)  

where r is a uniform random number in [0, 1], ω is the inertial weight, and c is an acceleration coefficient. In case of many recruiting 
requests, the robot moves to the closest target. 

3.5. Coordination based on the ABC bio-heuristic 

The ABC algorithm is modelled on the foraging process of honey bees. There is a population of food positions, and bees that seek, 
advertise, and select the best food position. A solution (food source) xi is a D-dimensional vector, whose fitness value is associated with 
its position. There are BN onlooker bees, BN employed bees, and SN food sources, with SN=BN. An onlooker bee selects the food source 
according to the following probability of fitness pi: 

pi =
fiti

∑SN
q=1fitq

(11)  

where fiti is the fitness of the i-th solution, provided by its employed bee. According to an iteration logic, the next candidate food 
position is derived from the previous one: 

xt+1
i = xt

i + ϕ
(
xt

i − xj
)

(12)  

where xt+1
i is the new food position, calculated from the previous one xt

i and the selected target xj; φ is a random number between [ − 1, 
1]. In case of more than one request: the k-th robot selects the z-th target with probability: 

pkz =
1/dkz

∑FHRk
b=1 1

/
dkb

(13)  

where FHRk⊂F⊂T, and dkz is the Euclidean distance. 

3.6. Adaptive algorithm configuration and parametric space 

Despite the success of bio-inspired techniques, there are relevant algorithm selection and parameterization costs associated with 
every new type of mission and with new instances of known missions. In this paper, the DE is adopted for the parametric adaptation of 
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the bio-inspired exploration and recruitment algorithms on target search. The quality measure of a target search is the time needed for 
completing the mission, i.e., for discovering a given percentage of target [26]. As a consequence, the fitness of the DE is defined as the 
mission duration. More formally, given a simulated scenario Ω, made of: (i) simulation instants of time t ∈ N+; (ii) a set of robots R, 
each robot k having a dynamic position (xt

k,y
t
k); (iii) a set of targets z ∈ T, each target having a fixed position (x, y)z. Hence, the set of 

found targets F(t)⫅T, at a given instant of time t, is the set of targets {z} for which it exists a time t′ ≤ t and a related set of robots {kz
i }, i 

= 1, ...NR
min, such that the robots’ Euclidean distances from the target position is lower than the detection distance δ: 

F(t) =
{

z| ∃ kz
i , i= 1,…NR

min,∃t′ ≤ t : d
[(

xt′

kz
i
, yt′

kz
i

)
, (x, y)z

]
≤ δ

}
(14) 

The fitness of the simulated scenario Ω is then defined as the minimum instant of time for which F(t) has cardinality greater than or 
equal to ϑ • |T|: 

fitness(Ω) = mint∈N+{t : |F(t)| ≥ ϑ ⋅ |T|) (15)  

where ϑ is a percentage threshold close to 1 (usually set to .95) used to reduce the simulation duration without sensibly affecting the 
accuracy. 

More formally, the DE logic is summarized by the pseudocode presented in Algorithm 1. In a simulated scenario (or mission), the 
swarm Si explores an environment where Robots, Obstacles and Targets are statically specified. Let K be the number of aggregated 
parameters. In the DE, Si is a solution represented by a real K-dimensional vector called genotype pi. The search time returned by the 
simulated mission is used as a fitness of the solution, fi. DE starts with a population P(0), made by N candidate solutions, p(0)

i , randomly 
generated under user-specified parametric constraints. At each iteration t, and for each genotype p(t)i of the current population P(t), a 
mutant vector m is created by applying the mutation of randomly selected members. Then, a trial vector p∗i is created by crossover of m 
and p(t)

i . Subsequently, the population is modified selecting the best fitting vector between the fitness of the trial vector (f∗i ) and the 
fitness of the initial genotype (f (t)i ). When the termination criterion is true, i.e., number of iterations performed or adequate fitness 
reached [27], the vector characterizing the swarm with the best fitness (i.e. the shortest search time) in the current population is 
considered as the optimal swarm parameterization. The DE algorithm has at least two hyper-parameters: the scaling factor F ∈ [0, 2] 
from which results the mutant vector, and the crossover probability CR. The smaller CR the higher the probability of producing a vector 
that is more similar to the target vector rather than to the mutant vector. More formally, Algorithm 2 and Algorithm 3 define the 
mutation and the crossover operators, respectively. 

According to this approach, the DE finds the optimum in the parametric search space of the bio-inspired algorithm which, in turn, 

Table 1 
Parameters space of the ACO-E  

Parameters Interval 

rP (pheromone range) [0, 8] 
ERTU% [0, 1] 
Δφ0 [0, 4] 
ε Uniform [0, 1] 
a1 [0, 2] 
a2 [0, 2] 
η [0, 2] 
ψ [0, 2] 
λ [0, 2]  

Table 2 
Parameters space of the ACO-FTS-RR3-E  

Parameters Interval 

rW (perception range) [1, 19] 
rP (pheromone range) [0, 8] 
ERTU% [0, 1] 
Δφ0 [0, 4] 
ε Uniform [0, 1] 
a1 [0, 2] 
a2 [0, 2] 
η [0, 2] 
ψ [0, 2] 
λ [0, 2] 
β0 [0, 1] 
γ 1/L(L = max{m, n}) 
α [0, 0.4] 
σ Uniform [0, 1]  
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solves a target discovery problem in a bidimensional space, via exploration and recruitment of robots [28]. Thus, for each bio-inspired 
algorithm, a corresponding adaptive variant is proposed. 

Considering the ACO for exploration, the FTS, PSO and ABC for recruitment, the names of the corresponding variants are: ACO-E, 
FTS-E, PSO-E and ABC-E, where the term “E” means Evolution. An algorithm variant solving both exploration and recruitment includes 
two acronyms and is parameterized in a search space that is the union of the two search spaces. Since the recruitment problem varies 
significantly in complexity depending on the number of robots needed to process a target, NR

min, a term “RR*” is added to highlight the 
different complexity. For example, “RR3” means an algorithm for recruitment with NR

min = 3, whereas “RR1” means an algorithm 
without recruitment, i.e., an exploration algorithm. When both exploration and recruitment problems are considered, the name of the 
algorithmic solution includes both acronyms. For example, ACO-ABC-RR3-E. Table 1, Table 2, Table 3 and Table 4 show the para-
metric spaces of ACO-E (used only for exploration task), ACO-FTS-RR3-E, ACO-PSO-RR3-E and ACO-ABC-RR3-E, respectively. 

3.7. Exploration and coordination via the SFE hyper-heuristic 

In this section we consider a different algorithmic design based on hyper-heuristics. In this approach, the logic is not constrained by 
models of biological species. It consists of an optimization method of fundamental functional components, whose aggregation and 

Table 3 
Parameters space of the ACO-PSO-RR3-E  

Parameters Interval 

rW (perception range) [1, 19] 
rP (pheromone range) [0, 8] 
ERTU% [0, 1] 
Δφ0 [0, 4] 
ε Uniform [0, 1] 
a1 [0, 2] 
a2 [0, 2] 
η [0, 2] 
ψ [0, 2] 
λ [0, 2] 
ω [0.4, 1] 
r1 Uniform [0, 1] 
c1 [0, 4]  

Table 4 
Parameters space of the ACO-ABC-RR3-E  

Parameters Interval 

rW (perception range) [1, 19] 
rP (pheromone range) [0, 8] 
ERTU% [0, 1] 
Δφ0 [0, 4] 
ε Uniform [0, 1] 
a1 [0, 2] 
a2 [0, 2] 
η [0, 2] 
ψ [0, 2] 
λ [0, 2] 
φ Uniform [-1, 1]  

Fig. 3. Model of a stigmergic mark  

M.G.C.A. Cimino et al.
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tuning are represented on a unique and continuous search space. More formally, let us consider two fundamental swarm behavioral 
components, stigmergy and flocking [29]. 

Stigmergy is used to release an attractive (or repulsive) stimulus while (not) detecting targets. In the proposed computational model, 
a digital stigmergic mark is released by the robot in the environment. Fig. 3 illustrates the model of the stigmergic mark: it is a 
truncated cone with unit height, radius top and down. Multiple stigmergic marks can overlap, creating a stigmergic trail. Stigmergic 
trails evaporate over time. Since the stigmergic trail is maintained in a digital environment, it is instantly diffused, to immediately 
propagate information to nearby robots. More formally, let us consider the target z detected by the robot k at time t, with position (xt

z,

yt
z) ∈ W. The pheromone quantity Δst

k,c released on the cell c located in (x, y) is given by: 

Δst
k,c= {

1 if dzc ≤ rtop

dzc − rdown

rtop − rdown
if rtop < dzc < rdown

0 otherwise

(16)  

where rtopandrdown are radiusTop and radiusDown, respectively, dzc is the Euclidean distance between the target z and the cell c. The trail 
intensity in the cell c at time t is given by: 

st
c = max

{

0,min

{

smax , st− 1
c − erate ⋅ str

c +
∑NR

k=1
Δst

k,c

}}

(17)  

where str
c is the trail intensity on the cell c at the instant of the last pheromone release tr, and erate is evapRate, i.e., the given amount of 

intensity evaporated per unit time. The model with a linear evaporation and a streamlined shape allows a good control of the 
aggregated trail in the parameter space. The perceived stigmergic intensity is based on olfactory receptors, which can decrease in 
sensibility over time to prevent overstimulation (olfactory habituation). 

Fig. 4. Model of the flocking behavior: (a) regions, (b) separate, (c) cohere, (d) align.  

Table 5 
Parameters space of the SFE-RR1  

Parameters Interval 

stigmergy.radiusTop [1, 13] 
stigmergy.radiusDown [13, 19] 
stigmergy.evapRate [0.01, 1] 
stigmergy.olfactoryHabituation [1, 10] 
stigmergy.repulsiveRadius [0, 8] 
stigmergy.repulsiveEvapRate [0.01, 0.5] 
flocking.angle [15, 45] 
flocking.wiggleVar [5, 15] 
flocking.radiusSeparate [6, 16] 
flocking.maxSeparateTurn [30, 45] 
flocking.radiusAlign [16, 22] 
flocking.maxAlignTurn [30, 45] 
flocking.radiusCohere [18, 26] 
flocking.maxCohereTurn [15, 30]  

M.G.C.A. Cimino et al.
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Flocking is used to model a robust and flexible swarm formation. It is based on the rules of cohesion, separation and alignment, 
illustrated in Figure 4. The different rules are activated in separate regions (Figure 4a). The separation rules (Figure 4b) maintain a 
distance among flock mates for a better scan of the area. The cohesion rules (Figure 4c) direct the robot to the flock center, to avoid 
dispersion. Finally, the alignment rules (Figure 4d) keep the heading of each robot aligned to the average heading of its flock mates. 
Depending on the type of mission, flocking of different sizes can be modelled. 

An efficient heuristics hybridization is generated for a given application domain, in which DE minimizes the mission discovery 
time. The resulting algorithm is called SFE (Stigmergy, Flocking, Evolution) [26]. Since SFE can adapt his behavior to the problem, it 
can be used for both exploration and recruitment. More specifically, considering Figure 2: (i) a repulsive stigmergy is used as an 
anti-stimulus during the exploration (ii) an attractive stigmergy is used as a stimulus for recruitment; (iii) during exploration, the robot 
turns primarily to the maximum attractive pheromone, if detected, else follows the flocking rules, if flockmates are detected;otherwise 
it turns to the minimum repulsive pheromone. 

Table 5 and Table 6 show the parametric spaces of SFE-RR1, for exploration, and SFE-RR3 for both exploration and recruitment. 
Note that when the parameters radiusTop, radiusDown, and repulsiveRadius are very small, then attractive and repulsive stigmergy are 
very low too. Similarly, if flocking.angle in Figure 4a is very small, then flocking is very low since no flockmate is visible. Thus, such 
parameters can lower/raise the contribution of each component in the overall workflow, in a continuous optimization space. 

3.8. Management of the stochastic behavior 

An important aspect to consider is the control of the uncertainty potentially resulting from the initial swarm position and from the 
random-evaluated parameters. For this purpose, the initial swarm position is fixed: the swarms are initially located at the corners of the 
environment and oriented towards the center of it. However, there are two sources of non-determinism that can further influence the 
algorithmic performance. 

The first source occurs at the application level of the target search, because all swarm algorithms inherently include random-valued 
parameters: wiggle (SFE), ε (ACO), σ (FTS), r1 (PSO), and ϕ (ABC). To manage this uncertainty, we adopt confidence intervals as a way 
to measure performance beyond statistical fluctuations. Furthermore, in contrast to the other swarm algorithms, the SFE allows to 
adapt the range of the wiggle via the DE optimization, for achieving the best cost-uncertainty ratio. 

The second source of non-determinism occurs at the optimization level provided by the DE. Specifically, the intializePopulation 
function is managed via the lower/upper bounds per parameter, and by a Latin Hypercube sampling to maximize the coverage of the 
available parameter space. The generateMutant also involves multiple random extractions, except for the DE/best/1/bin, to select the 
best individual as a base vector p(t)i . Finally, the binomialCrossover includes some random extractions, managed by the parameter CR. To 
control the last two variabilities, two mutation strategies and various CR values have been compared in the hyperparameters search. 
Finally, to further reduce the overall uncertainty, each fitness evaluation is measured as an average of 10 trials, and the best result 
provided by the DE is calculated as an average of 3 independent trials made by 40 generations. 

4. Testbed and scenarios

A modeling and optimization testbed has been publicly released [7]. In addition to environment and swarm algorithms, the testbed
considers the robots sensing, actuation, and collision avoidance, by modeling drone size, battery duration, sensing radius, sensing 
angle, collision angle, collision vision angular speed, acceleration, and cruise speed. Three scenarios of different complexity have been 
considered. The Illegal Dump scenario represents a real Abusive Trash Map of 80,000 m2 near the town of Paternò (Italy), and is 
composed of 11 groups of targets with an average number of 4 targets per group, 19 buildings of different sizes, 140 trees (www. 
trashout.me). Figure 5 and Figure 6 show the aerial photo and the corresponding vectorial model, respectively. 

The Rural Mine scenario is a real-world example of areas with landmine objects in Bosnia-Herzegovina, described in public data 
(www.seedemining.org). It is made up of 28 buildings, 59 trees and 40 targets. Figure 7 and Figure 8 show the aerial photo and the 

Table 6 
Parameters space of the SFE-RR3  

Parameters Interval 

stigmergy.radiusTop [1, 13] 
stigmergy.radiusDown [13, 19] 
stigmergy.evapRate [0.01, 1] 
stigmergy.olfactoryHabituation [1, 10] 
stigmergy.repulsiveRadius [0, 8] 
stigmergy.repulsiveEvapRate [0.01, 0.5] 
flocking.angle [15, 45] 
flocking.wiggleVar [5, 15] 
flocking.radiusSeparate [6, 16] 
flocking.maxSeparateTurn [30, 45] 
flocking.radiusAlign [16, 22] 
flocking.maxAlignTurn [30, 45] 
flocking.radiusCohere [18, 26] 
flocking.maxCohereTurn [15, 30]  

M.G.C.A. Cimino et al.
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corresponding vectorial model, respectively. The LPG Leak scenario, is based on an accident caused by an LPG railcar rupture, which 
occurred in 2009 in the urban area of Viareggio, Italy [30]. Figure 9 and Figure 10 show the aerial map [30] and the corresponding 
vectorial model. 

5. Experimental setup and results

The most sensitive hyper-parameters of DE are the differential weight (F), the crossover rate (CR), and the population size (NP). We

Fig. 5. Illegal Dump scenario: aerial photo (Google Maps ©)  

Fig. 6. Illegal Dump scenario: vectorial model  

Fig. 7. Rural Mine scenario: aerial photo (Google Maps ©)  

M.G.C.A. Cimino et al.
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use a multiplier of the problem dimension for setting the total population size: the population has 4D individuals. Based on the 
literature, as discussed in a previous section, the range of values to consider are CR in [.1, .9] with steps of 0.1, F in [.4, .9] with steps of 
0.1. Two mutation strategies have been experimented. Figure 11 and Figure 12 show the grid search on the Illegal Dump scenario, with 
the ACO-E algorithm, for the DE/rand/1/bin (“r” for short) and the DE/best/1/bin (“b” for short), respectively. Here, the minimum 
duration of 189.3 ± 26.55 (r) and 190.0 ± 20.46 (b) is achieved for (CR, F) equals to (.8, .4) (r) and (.7, .4) (b), respectively. In both 
figures, the optimal values are highlighted with a small circle in the (CR, F) plane. 

Similarly, Figure 13 and Figure 14 show the grid search process with the SFE-RR1 algorithm, for DE/rand/1/bin (r) and DE/best/1/ 
bin (b), respectively. Here, the minimum duration of 104.8 ± 10.45 (r) and 121.0 ± 02.99 (b) is achieved for (CR, F) = (.4, .4) (r) and 
(.6, .5) (b), respectively. As a result, the DE/rand/1/bin strategy achieves better performance than DE/best/1/bin with the SFE-RR1 
algorithm, and achieves performance similar to DE/best/1/bin with the ACO-E algorithm. Overall, the effectiveness of DE/rand/1/bin 
can be considered better. 

By using the DE/rand/1/bin and the optimal values of hyperparameters determined by the grid search, a comparative analysis of 
the different algorithms is carried out. For each scenario and for each strategy, the DE optimization is carried out 10 times, determining 
via a graphical normality test that the resulting mission duration is well modelled by a normal distribution. Finally, the 95% confidence 
intervals are calculated. Table 7 and Table 8 show the mission duration before and after the DE. Here, it is apparent that the swarm 
exploration and recruitment carried out by the proposed SFE outperform the other strategies. Furthermore, it is clear that the DE 
optimization sensibly improves all the algorithms by providing adaptation to the specific scenario. 

Fig. 8. Rural Mine scenario: vectorial model  

Fig. 9. LPG Leak scenario: aerial map [30]  

Fig. 10. LPG Leak scenario: vectorial model  

M.G.C.A. Cimino et al.
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Figure 15 shows the average best fitness against number of generations of the optimization process. 
Figure 16 and Figure 17 show the tracks left by drones coordinated by the SFE-RR1 before and after the DE. Here, a higher green 

intensity means more visits in the area. Clearly, the DE optimization leads to a more efficient exploration, focusing the search on the 

Fig. 11. DE/best/1/bin hyperparameters grid search, with the ACO-E algorithm and the Illegal Dump scenario.  

Fig. 12. DE/rand/1/bin hyperparameters grid search, with the ACO-E algorithm and the Illegal Dump scenario.  

Fig. 13. DE/best/1/bin hyperparameters grid search, with the SFE-RR1 algorithm and the Illegal Dump scenario.  

M.G.C.A. Cimino et al.



Computers and Electrical Engineering 95 (2021) 107420

14

regions of interest rather than on the initial positions. 
To better show the improvements made by the optimization of the target discovery process, Figure 18 shows the average per-

centage of target found against time by the SFE, before and after the DE, over 10 trials. 
Finally, to show the computational efficiency, let us consider the duration of DE for the different algorithms and for each scenario. 

The runtime of the DE depends linearly on the population size and on the number of generations. Let us fix the generations to 40 for all 
algorithms. Let us also consider that implementation is engineered for parallel computing. The hardware and software platforms used 
are: CPU Intel(R) Xeon(R) Gold 6140M at 2.2-2,3 GHz, Linux OS and Python (optimization) + Java/Netlogo (mission simulation). The 
optimization time of a mission depends on the scenario complexity and on the quality of the coordination mechanism, which are 
difficult to express. The optimization time can be empirically measured via the average DE runtime per scenario. Table 9 shows the 
average DE optimization time, over 3 runs, for 40 generations. The computational model of the SFE is the most efficient for both 
exploration and recruitment. In contrast, when considering the complexity in memory, a different situation appears. Table 10 shows 
the memory usage for each algorithm, for the Illegal Dump scenario. It is apparent that the SFE is much more expensive in terms of 
memory. 

6. Conclusions

This paper focuses on the target search problem via swarms of robots, in complex or open environments. In this context, robots

Fig. 14. DE/rand/1/bin hyperparameters grid search, with the SFE-RR1 algorithm and the Illegal Dump scenario.  

Table 7 
Swarm Exploration: mission duration before and after Differential Evolution  

Scenario Algorithm Mission duration before DE Mission duration after DE 

Dump SFE-RR1 185.97 ± 13.50 144.87 ± 09.62 
" ACO-E 317.10 ± 18.10 217.87 ± 09.56 
Rural Mine SFE-RR1 226.67 ± 51.03 159.53 ± 20.37 
" ACO-E 256.80 ± 14.08 205.00 ± 07.61 
LPG Leak SFE-RR1 191.57 ± 17.13 134.87 ± 05.09 
" ACO-E 215.43 ± 25.35 168.80 ± 04.04  

Table 8 
Swarm Exploration + Recruitment: mission duration, before and after Differential Evolution  

Scenario Algorithm Mission duration before DE Mission Duration after DE 

Dump SFE-RR3 251.87 ± 27.31 186.20 ± 04.02 
" FTS-RR3-E 331.23 ± 20.68 261.47 ± 09.10 
" PSO-RR3-E 396.00 ± 09.99 269.23 ± 03.55 
" ABC-RR3-E 575.87 ± 131.24 409.33 ± 19.93 
Rural Mine SFE-RR3 267.70 ± 24.51 193.90 ± 24.71 
" PSO-RR3-E 338.00 ± 61.86 236.67 ± 01.73 
" FTS-RR3-E 316.70 ± 30.45 262.00 ± 03.85 
" ABC-RR3-E 409.10 ± 26.56 318.00 ± 22.83 
LPG Leak SFE-RR3 220.10 ± 05.05 168.77 ± 07.44 
" PSO-RR3-E 459.77 ± 09.10 286.20 ± 21.12 
" FTS-RR3-E 482.43 ± 28.61 302.23 ± 14.45 
" ABC-RR3-E 832.43 ± 15.15 577.13 ± 19.20  
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Fig. 15. Mission duration optimization: average best fitness against number of generations: exploration on (a) Dump, (b) Rural Mine, (c) LPG Leak, 
exploration + recruitment on (d), (e), (f) 

Fig. 16. Illegal Dump scenario: drones’ trails before the DE  
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cannot exploit static information on layout and targets locations, and therefore their coordination is fundamental for an efficient target 
discovery. To coordinate the swarm, the following popular bio-inspired swarm algorithms have been considered and made adaptive: 
ACO (inspired by ants) for exploration; FTS (fireflies), PSO (birds), and ABC (bees) for recruitment. Parametric adaptiveness is ach-
ieved via the DE optimization. The DE is able to find the best algorithmic parameters of a bio-inspired algorithm for improving the 
mission performance. In order to overcome the design constraints of bio-inspired approaches, an approach based on hyper-heuristics is 
also proposed. The proposed approach is called SFE because it is based on Stigmergy, Flocking and Evolution. Experimental results on 
real-world scenarios, carried out and released as a public testbed, show that the SFE significantly outperforms the adaptive bio- 

Fig. 17. Illegal Dump scenario: drones’ trails after the DE  

Fig. 18. Illegal Dump scenario: average percentage of targets found against time achieved by SFE, before (blue) and after (orange) DE  

Table 9 
Average DE optimization duration, for 40 generations  

Scenario Algorithm Avg DE time Pop. size 

Dump SFE-RR1 1h 04′ 01′’ 56 
" ACO-E 9h 49′ 53′’ 32 
" SFE RR3 1h 56′ 26′’ 56 
" FTS-RR3-E 15h 29′ 39′’ 44 
" PSO-RR3-E 1d 7h 29′ 41′’ 44 
" ABC-RR3-E 19h 41′ 13′’ 36 
Rural Mine SFE-RR1 1h 26′ 29′’ 56 
" ACO-E 19h 34′ 52′’ 32 
" SFE RR3 2h 7′ 22′’ 56 
" FTS-RR3-E 14h 26′ 24′’ 44 
" PSO-RR3-E 1d 19h 39′ 24′’ 44 
" ABC-RR3-E 14h 42′ 13′’ 36 
LPG Leak SFE-RR1 1h 4′ 16′’ 56 
" ACO-E 1d 1h 49′ 55′’ 32 
" SFE RR3 1h 59′ 12′’ 56 
" FTS-RR3-E 22h 39′ 00′’ 44 
" PSO-RR3-E 15h 16′ 18′’ 44 
" ABC-RR3-E 1d 3h 13′ 45′’ 36  
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Table 10 
Memory usage at the end of the 1st DE generation  

Algorithm RAM (GB) Pop. size RAM (GB) per individual 

SFE-RR1 317 56 5.66 
ACO-E 127 32 3.97 
SFE RR3 321 56 5.73 
FTS-RR3-E 201 44 4.57 
PSO-RR3-E 175 44 3.98 
ABC-RR3-E 165 36 4.58  

Algorithm 1 
Differential Evolution algorithm  

function differentialEvolution(Robots, Obstacles, Targets) 
t = 0; 
P(0) = initializePopulation(); 
for each genotype p(0)

i in P(0) do  

S(0)
i = genotypeToSwarm(p(0)i );  

f(0)i = simulateMission(S(0)
i , Robots, Obstacles, Targets);  

do 
for each genotype p(t)

i in P(t) do  

m = generateMutant(P(t), p(t)i );  

p∗i = binomialCrossover(p(t)i , m);  
S∗

i = genotypeToSwarm(p∗
i );  

f∗i = simulateMission(S∗
i , Robots, Obstacles, Targets);  

for each genotype p(t)
i in P(t) do  

if (f∗i < f (t)i ) then  

p(t+1)
i = p∗

i ; f(t+1)
i = f∗i ;

else 
p(t+1)

i = p(t)i ; f(t+1)
i = f(t)i ;  

f(t+1)
min = min {f (t+1)

1 ,…, f(t+1)
N };  

t = t +1; 
while (terminationCriterion(f(t)min , t) = false);  

return genotypeToSwarm(p(t)min);   

Algorithm 2 
Mutant vector generation for De/rand/1/bin  

function generateMutant(P(t), p(t)i )  

p′ = randomExtraction(P(t)\ {p(t)
i });  

p′ ′ = randomExtraction(P(t)\ {p(t)
i , p′

});  

p′ ′ ′ = randomExtraction(P(t)\ {p(t)
i , p′

, p′′});  
return p′ + F • (p′ ′ − p′ ′ ′);  

Algorithm 3 
Binomial crossover  

function binomialCrossover(p(t)i , m)  
k ¼ randomInteger(1, K); 
for each j-th gene p(t)j,i in p(t)i do  

if (randomReal(0,1) < CR) or (j = k) then 
wj= mj; 

else 
wj= p(t)j,i ;

return w;  
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heuristics, in both exploration and recruitment. The SFE is also faster in terms of optimization duration, although it requires more 
memory. 

Authors’ statement 

Manuscript title: A hyper-heuristic methodology for coordinating swarms of robots in target search 
All authors certify that they have participated sufficiently in the work to take public responsibility for the content, including 

participation in the concept, design, analysis, writing, or revision of the manuscript. 
Mario G. C. A. Cimino, Domenico Minici, Manilo Monaco, Stefano Petrocchi and Gigliola Vaglini 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgments 

Work partially supported by the Italian Ministry of Education and Research (MIUR) in the framework of the CrossLab project 
(Departments of Excellence). 

References 

[1] Dorigo M, Birattari M, Stutzle T. Ant colony optimization. IEEE Comput Intell Mag 2006;1(4):28–39. 
[2] Alfeo AL, Cimino MGCA, De Francesco N, Lazzeri A, Lega M, Vaglini G. Swarm coordination of mini-UAVs for target search using imperfect sensors. Int Dec Tech 

2018;12(2):149–62. 
[3] Yang XS. Firefly algorithms for multimodal optimization. In: Proc. of 5th symposium on stochastic algorithms, foundations and applications (SAGA). Springer; 

2009. p. 169–78. 
[4] Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. Appl Math Comput 2019;214(1):108–32. 
[5] Senanayake M, Senthoorana I, Barca J, Chung H, Kamruzzamanc J, Murshedc M. Search and tracking algorithms for a swarm of robots: a survey. J Robot Auton 

Syst 2016;75:422–34. 
[6] Cimino MGCA, Lazzeri A, Vaglini G. Improving the analysis of context-aware information via marker-based stigmergy and differential evolution. In: Proc. of Int. 

Conf. on Artificial Intelligence and Soft Computing (ICAISC); 2015. p. 341–52. 
[7] Monaco M, (2021). Github platform, SFE repository, https://github.com/mlpi-unipi/sfe. 
[8] Fujisawa R, Dobata S, Kubota D, Imamura H, Matsun F. Dependency by concentration of pheromone trail for multiple robots. In: Proc. of the 6th Int. Conf. on 

Ant Colony Optimization and Swarm Intelligence (ANTS). Springer; 2008. p. 283–90. 
[9] Ducatelle F, Di Caro GA, Pinciroli C, Gambardella LM. Self-organized cooperation between robotic swarms. Swarm Intell 2011;5(2):73–96. 

[10] Masár M, Zelenka J. Modification of PSO algorithm for the purpose of space exploration. In: Proc. of Int. Conf. on Intelligent Engineering Systems (INES). IEEE 
Press; 2012. p. 223–6. 

[11] Contreras-Cruz MA, Ayala-Ramirez V, Hernandez-Belmonte UH. Mobile robot path planning using artificial bee colony and evolutionary programming. Appl 
Soft Comput 2015;30:319–28. 

[12] Bayindir L. A review of swarm robotics tasks. Neurocomputing 2016;172:292–321. 
[13] Hutter F, Hoos HH, Stützle T. Automatic algorithm configuration based on local search. In: Proc. of the Twenty-second AAAI Conference on Artificial 

Intelligence. AAAI Press; 2007. p. 1152–7. 
[14] Eiben AE, Hinterding R, Michalewicz Z. Parameter control in evolutionary algorithms. IEEE Trans. Evol Comput 1999;3(2):124. 
[15] Burke EK, Hart E, Kendall G, Newall J, Ross P, Schulenburg S. Hyperheuristics: An emerging direction in modern search technology. Handbook of 

Metaheuristics. Kluwer Press; 2003. p. 457–74. 
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