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Abstract—This paper introduces a novel method and tools 
for groundwater modeling. The purpose is to perform numerical 
approximations of a groundwater system, for unlocking and 
paving water management problems and supporting decision-
making processes. In the last decade, Data-driven Models 
(DdMs) have attracted increasing attention for their efficient 
development made possible by modern remote and ground 
sensing and learning technologies. With respect to conventional 
Process-driven Models (PdMs), based on mathematical 
modeling of core physical processes into a system of equations, 
a DdM requires less human effort and process-specific 
knowledge. The paper covers the design and simulation of a 
deep learning modeling tool based on Convolutional Neural 
Networks, integrated with the design and simulation of the 
workflow based on the Business Process Model and Notation 
(BPMN). Experimental results clearly show the potential of the 
novel approach for scientists and policy makers.  
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I. INTRODUCTION AND BACKGROUND 

Groundwater modeling is a computational method to 
perform numerical approximations of a groundwater system, 
for addressing water management problems and supporting 
decision-making processes. Typical uses of groundwater 
models are what-if analysis and forecasting [1]. Groundwater 
systems are affected by past, current, local, global, natural and 
anthropogenic impacts. Their modeling is based on 
knowledge, information and data related to a range of factors. 
The observation of characteristics, the conceptual 
understanding of relevant phenomena, the gathering and 
monitoring of spatio-temporal data are fundamental for a deep 
understanding of the system and the proxy parameters for 
limiting the model uncertainty [2]. The workflow of 
conventional groundwater modeling takes a long time and a 
huge human time-consuming effort. In particular, a Process-
driven Model (PdM) is the formal description of the core 
physical processes into a system of governing equations. The 
governing equations are usually solved numerically, deriving 
a discrete solution in the space and time. A PdM is based on 
deep knowledge of the observed system dynamics. It requires 
many additional spatial data on geological features and 
hydrogeological properties of the aquifer. Large 

computational resources and long calibration activities are due 
for the increasing refinement and complexity of a PdM [3]. 

In the last decade, Data-driven Models (DdM) have 
attracted increasing attention for their optimized development 
made possible by modern sensing and deep-learning 
technologies. A DdM requires a different approach, based on 
systematic data acquisition and low process-specific 
knowledge, which is incorporated as data transformation into 
features. For example, to predict groundwater levels, the input 
data could be: historical piezometric data and surface water 
levels, climatic data, land-use/land cover, groundwater 
withdrawal and socio-economic data [4]. The generated model 
captures the underlying input-output mapping without 
additional expert user input. In particular, Deep Learning (DL) 
an engineered machine learning, made possible by Graphical 
Processing Units (GPUs), can model large data sets with a 
sensibly reduced human effort with respect to conventional 
machine learning. PdM and DdM can actually be combined 
for achieving a better potential. For example, an input-output 
mapping can support process-oriented modeling and 
understanding, as well as process-oriented modeling can 
determine the best feature engineering for input-output 
mapping [5]. According to this perspective, the objective of 
this work is to explore and measure the effectiveness of DdM 
versus PdM, developing a particular DL architecture for a case 
study, as well as an operational workflow to measure the 
productivity of both approaches. The selected case study is the 
strategic aquifer of the Mornag Plain (Tunisia), affected by a 
massive withdrawal of groundwater mainly for irrigation 
purposes.  

As a DL architecture, a Convolutional Neural Network 
(CNN) will be developed. In a CNN, objects are recognized 
via local and global features, i.e., based on simple patterns and 
on more structured patterns, respectively. In particular, a CNN 
is the state-of-the art DL solution to exploit the local 
topological nature of features in the groundwater maps. A 
CNN has the advantage that it does not need hand-engineered 
filters based on prior knowledge and human effort, with 
respect to traditional data processing algorithms. This means 
that by providing the set of input-output data, an optimization 
(training) algorithm is able to iteratively modify the network 
parameters in order to reduce the output error, i.e., to provide 
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a numerical value very close to the target. Moreover, the 
model can be general, i.e., the network is able to effectively 
provide the output for new data. A very important aspect of 
DL modeling is to select the best hyperparameters of the 
architecture. An example of hyperparameter is the learning 
rate, i.e., the speed at which the network learns. A too small 
value can produce a very long training process that could get 
stuck, whereas a too large value can produce an unstable 
training process. In order to guarantee the reproducibility of 
the training, the most sensitive hyperparameters are not set by 
hand, but using an automatic optimization algorithm. 

The remainder of this paper is organized as follows: 
Section II defines the workflow of ground water modeling via 
PdM and DdM. Section III covers the case study. Section IV 
summarizes the development of the DL architecture. Finally, 
Section V draws conclusions, future challenges and works. 

II. THE WORKFLOW OF GROUNDWATER MODELING

Fig. 1 shows the workflow of the groundwater PdM, in a 
standard graphical representation called Business Process 
Model and Notation (BPMN). The BPMN has been developed 
with a solid mathematical foundation, to allow execution, 
simulation, and automation of consistency checking [6]. It is 
also suitable to standardize and facilitate the communication 
between all stakeholders. In BPMN, an event, an activity, a 
decision/merge node are represented by a circle, a rounded 
box, a diamond, respectively. Sequence flow and data flow are 
represented by solid and dotted arrows, respectively. Finally, 
data storage is represented by a cylinder. 

In particular, the workflow starts when there is a new 
model to generate (event on top-left). When new data are 
available, the first activity is the ingestion of hydrogeological 
and geological data, made by: (i) discharge/recharge sources, 
(ii) piezometric data, (iii) hydrodynamic parameters, and (iv) 
acquifer geometry & boundary conditions. If the ingested data 
are sufficient, two parallel tasks are carried out: on one side, 
the generation of sensor data from discharge/recharge sources 
and piezometric data; on the other side, the generation of 
geographic map. The human icon on the task means that the 
activity is managed by a human and not fully automated. 
Subsequently, the generation of thematic maps via GIS 
(Geographic Information System) is performed, followed by 
the generation of a conceptual model via the Groundwater 
Modeling System (GMS) software. If the model is completely 
new, a grid is set, and then computed. Then the hydrogeologic 
model can be simulated using hydrodynamic parameters. 
Finally, the model is calibrated, using observed piezometric 
data and providing discharge/recharge sources. If the model is 
not sufficiently accurate, then the workflow restarts from the 
generation of the thematic maps (hydrodynamic parameters 
and discharge/recharge sources). 

Fig. 2 shows the workflow of the groundwater DdM. What 
is different is the sequence of the last three tasks: optimize 
hyperparameters, train the model, and assess model accuracy. 
In case of inaccurate model, only the last three tasks are 
repeated. Table I shows the simulation parameters for the 
workflow of both PdM and DdM. The simulation has been 
carried out via the BIMP simulator [7]. Fig. 3 and Fig. 4 show 
the average number of executions over 10 runs, for both PdM 
and DdM, represented in a color scale. Specifically, it is 
apparent that the major costs associated to the PdM are related 
to the calibration loop, which is colored in red because it is 
executed on average 17.2 times. In contrast, the 

hyperparameters optimization loop of the DdM is carried out 
on average 1.1 times. Not surprisingly, Fig. 5 and Fig. 6 show 
the average duration of each task: here the calibration task 
takes the highest time in PdM, and the ingestion task in DdM. 
Overall, the average time for each instance of process, in the 
PdM and DdM, is 13.2 months and 52.5 days, respectively. 
This result clearly shows the advantages of DL in the chain. 

III. THE CASE STUDY OF THE MORNAG PLAIN AQUIFER

The selected study case is the well-know Mornag Aquifer, 
located in the north east of Tunisia characterized by a semi-
arid climate. The rich agricultural Mornag coastal plain, lies 
20 Km SE of Tunis (Fig. 7). Vineyard and olive tree are the 
main crops, and irrigation is secured by groundwater hosted 
within the clastic aquifer and surface sources. Treated 
wastewater for multi-reuse including irrigation are also 
provided by local wastewater treatment plants [8]. 
Groundwater is the most important water source in Mornag 
for agriculture, domestic, and industry uses. To manage the 
negative effects of groundwater level decline and help 
decision-making in water management, a numerical 
simulation based on an integrated GIS-GMS has been 
adopted. Simulation allows to understand the groundwater 
flow dynamic and to assess the functioning of the aquifer 
system in the Mornag Plain [9][10]. 

TABLE I. GROUNDWATER MODEL SIMULATION PARAMETERS 

Simulation model parameter Value 

Duration of ingest hydrogeologic data 83.3 – 96.7 days 

Duration of generate sensor data 1.0 – 2.0 hours 

Duration of generate geographic map 30.0 – 60.0 days 

Duration of generate thematic map via GIS 27.9 – 37.3 days 

Duration of generate conceptual model via GMS 27.1 – 35.4 days 

Duration of set grid 1.0 – 2.0 hours 

Duration of (re-)compute grid 24 – 48 hours 

Duration of simulate hydrogeologic model 26.3 – 34.6 days 

Duration of calibrate hydrogeologic model 90 – 150 days 

Duration of optimize hyperparameters 2.0 – 4-0 hours 

Duration of train the model 0.3 – 0.6 hours 

Duration of assess model accuracy 0.3 – 0.6 hours 

Percentage of sufficient data 95% 

Percentage of existing grid 95% 

Percentage of model accurate (PdM) 5% 

Percentage of model accurate (DdM) 95% 

The main step of the groundwater modeling process is to 
develop the conceptual model, by combining all thematic 
maps (aquifer geometry, boundary conditions, hydrodynamic 
parameters, discharge/recharge sources, and piezometric 
data). All thematic maps were integrated into the GMS using 
the GIS environment. The conceptual model helps for a better 
understanding of the aquifer system behaviors and tunes the 
groundwater modeling [9]. After spatio-temporal 
discretization, setting of the initial values, partition of the 
hydrodynamic parameters, disposal of the sources and sinks, 
the 3D model was simulated using the finite-difference code, 
MODFLOW (Fig. 8). 



 
Fig. 1. BPMN workflow of groundwater Process-driven Modeling. 

 
Fig. 2. BPMN workflow of groundwater Data-driven Modeling. 

 
Fig. 3. Heatmap based on counts for Process-driven Modeling 

 
Fig. 4. Heatmap based on counts for Data-driven Modeling 



 
Fig. 5. Heatmap based on durations for Process-driven Modeling 

 
Fig. 6. Heatmap based on durations for Data-driven Modeling 

 
Fig. 7. The general location map of the study area (via GIS) 

 
Fig. 8. 3D shape of the Mornag aquifer model calibrated (via GMS). 

An important step is calibration. During iterative process, the 
input parameters to a groundwater model are modified to 
ensure that the conceptual model matches the real 
hydrogeological situation. It is mainly reflected in the fact that 

the simulated piezometric level is consistent with the observed 
piezometric level (fitting error of the long-time observation 
well was within the confidence interval) [9]. The steady-state 
model was calibrated with the hydrological conditions of the 
year 1971 when the hydraulic heads were appeared to be in 
equilibrium condition [11]. Transient simulations were 
calibrated for two stress periods, namely the winter and 
summer stress periods, for each year between 1971 and 2015. 
As a result, from the numerical simulation of the Mornag 
aquifer system, we note that the applied method (MODFLOW 
simulation) can reflect the changes within the input and output 
of the groundwater system (simulated piezometric level), with 
the flexibility to acknowledge physical significance 
(parameter estimation) and predict the output changes under 
different hydrological dynamic conditions. Nevertheless, the 
spatially and temporally variable parameters and inputs to 
complex groundwater models typically end in long runtimes 
which hinder comprehensive calibration, sensitivity, and 
uncertainty analysis. There are thus deficiencies in satisfying 
the necessities of high precision and dynamic management 
[12]. The PdM is calibrated using 80% of the data, and 
validated with the remaining 20%. Overall, the Mean 
Absolute Residual (MAR) of the hydraulic head level error 
achieved is 4.84 meters [13]. 

IV. DEVELOPMENT OF THE DATA-DRIVEN MODEL 

The proposed architectural model has been implemented, 
tested, and publicly released with the dataset on the Github 
platform [14], to foster its application on various research 
environments. In particular, the DL architecture takes as 
inputs the recharge rate (Fig. 9), river level, and pumping 
wells (Fig. 10),  and provides as outputs the flow front face, 
flow lower face, flow right face, hydraulic head level, and 
storage. The dataset is made by 88 samples. Each sample 
represents a period of 6 months, from 1971 to 2015, and is 
made by a grid of 725 cells (4150), corresponding to an area 
of 182 Km2.  



 
Fig. 9. Sample input (recharge rate). 

 
Fig. 10. Sample input (pumping wells). 

The overall architecture is structured as follows. For each 
of the three inputs, an independent CNN is used for feature 
extraction [15]. Then, an encoding Feed Forward Neural 
Network (FFNN) takes the three features provided by each 
CNN, and provides an encoded output. Such output feeds five 
Transpose CNN (TCNN), for corresponding five outputs. The 
CNN is structured as follows: batch normalization and two 
subsequent layers, each made by convolutional layer with 
kernel size 5, a max pool layer with size 33, and a leaky 
ReLU activation function. The structure of the encoding 
FFNN is made of two layers of neurons, each layer size is 
established by the hyperparameter optimization process (a 
typical value is about 180 neurons). The TCNN is structured 
as follows:  two subsequent layers, each made by 
convolutional transpose layer followed by a ReLU activation 
function. The first layer with kernel size 55 and dilation 2, 
and the second layer with kernel size 77 and dilation 2. 
Finally, a convolutional transpose layer with kernel size 
1010 and dilation 3. The dataset is partitioned with the 
holdout method in training (60%), validation (20%) and 
testing (20%).  

To guarantee the reproducibility of the training, the most 
sensitive hyperparameters have been set using an optimization 
algorithm based on a Tree Parzen Estimator (TPE) for 
determining the best choice [16]. On average, the 
hyperparameter optimization has been carried out in 3.52 
hours, using the following hardware resources: GPU 
NVIDIA™ GeForce RTX 2080; CPU Intel® Core™ i9-9900K 
@ 3.60GHz; CACHE L1 512 KB, L2 2 MB, L3 16 MB. On 

average, a training is carried out in 9.67 mins. Fig. 11 shows 
the average Mean Squared Error (MSE), i.e., computed over 
the five outputs, against the number of iterations, in the 
hyperparameters optimization process. As a result, the 
following best hyperparameters values have been found: 
learning rate: 0.00159, batch size: 32, patience: 50, loss: L1, 
features size: 49, CNN channels: 5 (1st level), 10 (2nd level), 
TCNN channels: 20 (1st level), 20 (2nd level). Fig. 12 shows 
the average MSE, i.e., computed over the five outputs, against 
the number of iterations, for the training and validation errors 
made with the best hyperparameters. The learning curve is 
characterized by a good fit model, because it starts with 
moderately high training and validation errors, then gradually 
decreases and flattens. Moreover, both the training and 
validation errors move close to each other, with validation 
being slightly greater than the training error. 

 
Fig. 11. Average MSE (meters) against number of iterations in the 

hyperparameters optimization process. 

 
Fig. 12. Average MSE (meters) of training and validation errors against 

number of iterations. 

Table II shows the Mean Absolute Error of the output 
provided by the Data-driven Model, for the training, 
validation and testing processes. Here, the different sizes are 
due to the different scales of each output. In particular, it is 
worth to note that the error on hydraulic head level is about 
0.32 meters, which is very promising considering the 
hydraulic head level error achieved by the Process-driven 
Model, i.e., 4.84 meters. For a better insight, Fig. 9, Fig. 10, 
and Fig. 13 show a sample input of recharge and wells 
provided to the model, with the related head output (a), target 
(b) and absolute error (c). 



(a) (b) (c) 

Fig. 13. Sample hydraulic head level: output (a), target (b), absolute error (c). 

TABLE II. PERFORMANCE OF THE DATA-DRIVEN MODEL  

Output 
Training 

MAE (mt.) 
Validation 
MAE (mt.) 

Testing 
MAE (mt.) 

Flow front face 0.000287 0.000320 0.000305 

Flow lower face 1.626 2.365 1.794 

Flow right face 0.000242 0.000255 0.000248 

Hydraulic head level 0.319 0.320 0.329 

Storage 0.000160 0.000185 0.000163 

Average 0.0639 0.0641 0.0659 

V. CONCLUSIONS AND FUTURE WORK 

Data-driven models and the related workflow models offer a 
new perspective to groundwater modeling useful for 
scientists, policy makers and water users. According to this 
perspective, this work explores and measures the effectiveness 
of a data-driven modeling method, developed with a Deep-
Learning architecture on a real-world case study, as well as an 
operational workflow to measure its productivity compared 
with a conventional process-driven approach. As a case study, 
the Mornag Plain aquifer is considered. Overall, the proposed 
method is able to achieve an absolute error on hydraulic head 
level of 0.32 meters, which is very accurate with respect to the 
error of 4.84 meters provided by a traditional approach. In 
terms of workflow efficiency, the average duration of the data-
driven modeling is 52.5 days, which is very fast with respect 
to the average duration of 13.2 months for the traditional 
workflow. Given such promising results, the future works will 
focus on more experimentation of the proposed method for a 
new stream of data, to understand the variations in hydraulic 
head level and how it is affected by the changes in 
hydrological conditions under the context of the climate 
change (recharge rate and pumping wells). 
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