
Zero-shot mathematical problem solving via  
Generative Pre-trained Transformers 

Federico A. Galatolo1 a, Mario G.C.A. Cimino1 b and Gigliola Vaglini1 c 
1Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa, Italy 

{federico.galatolo, mario.cimino, gigliola.vaglini}@ing.unipi.it 

Keywords: Deep Learning, Natural Language Processing, Generative Pre-trained Transformers, Zero-shot Learning, 
Mathematical Problem Solving. 

Abstract: Mathematics is an effective testbed for measuring the problem-solving ability of machine learning models. 
The current benchmark for deep learning-based solutions is grade school math problems: given a natural 
language description of a problem, the task is to analyse the problem, exploit heuristics generated from a very 
large set of solved examples, and then generate an answer. In this paper, a descendant of the third generation 
of Generative Pre-trained Transformer Networks (GPT-3) is used to develop a zero-shot learning approach, 
to solve this problem. The proposed approach shows that coding based problem-solving is more effective than 
the natural language reasoning based one. Specifically, the architectural solution is built upon OpenAI Codex, 
a descendant of GPT-3 for programming tasks, trained on public GitHub repositories, the world’s largest 
source code hosting service. Experimental results clearly show the potential of the approach: by exploiting 
the Python as programming language, proposed pipeline achieves the 18.63% solve rate against the 6.82% of 
GPT-3. Finally, by using a fine-tuned verifier, the correctness of the answer can be ranked at runtime, and 
then improved by generating a predefined number of trials. With this approach, for 10 trials and an ideal 
verifier, the proposed pipeline achieves 54.20% solve rate.   

1 INTRODUCTION 

In the last years, Natural Language Processing (NLP) 
researchers showed the great potential of Deep Neural 
Networks (DNN) to perform language-based problem 
solving. Special categories of DNN called 
Transformers, achieved unprecedented results in 
question answering, reading comprehension, 
sentiment analysis, summarization, translation and so 
on (Vaswani, 2017)(Wang, 2019). Systems such as 
BERT (Bidirectional Encoder Representations from 
Transformers) (Devlin, 2018) have been pre-trained 
with generic corpora such as the Wikipedia Corpus. 
Then, given a specific domain task, some layers of 
such networks can be further trained (i.e., fine-tuned) 
with a domain dataset, achieving a substantial gain. 
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Nevertheless, task-specific fine-tuning can be costly, 
because it involves corpora of thousands or tens of 
thousands of examples. For this reason, in this 
research a particular focus is given to “zero-shot” 
training, i.e., the capability of adapting such networks 
to lateral domains with unseen problems classes. 
Specifically, with the Generative approaches, 
language models are purposely designed and trained 
to generate feature representation of unseen classes. 

Since their introduction, the Generative Pre-
trained Transformer (GPT) models have shown good 
zero-shot capabilities in various tasks (Radford, 
2019). GPT models are trained using a task-agnostic 
loss function, whose training objective is to predict 
the next word in a text given all the previous words of 
the same text. The most recent and state-of-the-art 
GPT model is GPT-3 (Brown, 2020).  Zero-shot 
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GPT-3 achieved similar or even higher performances 
in various NLP tasks compared with other fine-tuned 
state-of-the-art models. Even if GPT models are very 
good in NLP tasks, they fail when prompted with 
tasks which involve performing mathematical 
operations (Hendrycks, 2021). Indeed, the 175 
billions parameters of GPT-3 fail to solve grade 
school level math problems (Cobbe, 2021).  

Very recently, the research laboratory OpenAI has 
released Codex, a GPT-3 descendant fine-tuned on 
publicly available code from GitHub (Chen, 2021). 
Given a Python docstring (a string literal expressing 
the functional requirements according to a standard 
syntax), Codex was able to correctly synthesize 
programs in almost 30% of the cases of the 
HumanEval benchmark (a dataset of hand-written 
code completion problems). In contrast, GPT-3 was 
never able to solve this problem at all (Chen, 2021).  

In this paper it is argued that, given a grade school 
mathematical problem, to ask Codex to synthesize the 
Python code for the problem and then run it to obtain 
the answer, achieves better performance than to ask 
GPT-3 to directly synthesize the answer. To verify 
this hypothesis, a zero-shot Codex-based pipeline has 
been designed, compared with GPT-3, by using the 
Grade School Math 8K (GSM8K) benchmark 
(Cobbe, 2021). Given the recent release of OpenAi 
Codex, the proposed approach to solve mathematical 
problems is mostly unexplored. 

This paper is organized as follows. Section 2 
covers the design of the proposed approach. 
Experimental results are discussed in Section 3. 
Finally, Section 4 draws conclusions and future work. 

2 ARCHITECTURAL DESIGN 

Figure 1 shows a scenario of GSM8K problem with 
related solutions. In the first cell (P), the problem 
formulation in natural language is shown. The second 
cell (S) shows the true solution to the problem. The 
third cell (SC) shows the solution provided by Codex, 
and finally the fourth cell (SG) shows the solution 
provided by GPT-3. In the scenario, both SC ad SG are 
correct. Specifically, in SC the solution (3) is provided 
by a Python interpreter executing the code provided 
by Codex.  

In general, the interpreter can detect an error in the 
code: invalid program, exception raised or even halts. 
Another case of detectable error occurs if the code 
does not provide any solution at the end of the 
execution, or after a predefined time (e.g. an 
indefinite loop). In case of detectable error, Codex is 
automatically asked to provide another solution to the 

same problem. As an overall result, it is then 
supposed that a value SC is always provided after 
some trial. 

From the operational point of view, Figure 2 
shows the use case related to GPT-3:  
1) The network input, which is made by the string

“Question:” followed by the user input string, a
newline character and the string “Answer:” is
used to generate new tokens until the newline
character is generated

2) the generated tokens are then shown after the
string “Answer:”.

P A robe takes 2 bolts of blue fiber and half that 
much white fiber.  How many bolts in total does it 
take? 

S 3 
SC def robe(blue, white): 

total = blue + white 
return total 

robe(2,1) 
3 

SG We can do this one in our heads because we know 
the answer is 2.5. We know that the robe takes 2 
bolts of blue and half that much white, or 1.5. So 
we can multiply 2 and 1.5to get 3. So the robe takes 
3 bolts of fiber 

Figure 1: Scenario of a GSM8K problem (P), with the true 
solution (S), the solution provided by Codex (SC), and the 
solution provided by GPT-3 (SG). 

Figure 3 shows the use case related to Codex: 
1) the network input is the string “#Write a Python

function that solves the problem:” followed by the
input question. The character “#” denotes a
Python comment, i.e., a line expressed in natural
language that is not executed by the interpreter.
The input question is completed with a newline
character;

2) the newline character is followed by the keyword
“def” which denotes the beginning of a function.
The network is then asked to generate new tokens
until two consecutive newline characters are
generated. This is a convention for the end of a
small Python function

3) subsequently, the text related to step 1 and step 2
is followed by the automatically generated text:
“#Call the function … to solve the problem …”,
where the name of the function is the word
generated at step 2 after the keyword “def”, and
the problem is the initial input question provided
at step 1

4) the overall text generated at step 1, step 2, and step
3 is then sent to Codex, which generates a new
line of tokens with a Python call to the function,



including also the actual parameters, until the 
newline token is generated 

5) the function call is then added to the Python code, 
and sent to the interpreter, which finally provides 
the numerical result. 
 

1 Question: "A robe takes…" 
2 Answer: "We can do this…" 

Figure 2: Use case of GPT-3 problem solving. 

1 #Write a Python function that 
solves the problem: "A robe takes…" 

2 def robe … 
3 #Call the function robe to solve 

the problem "A robe takes…" 
4 robe(2,1) 
5 3 

Figure 3: Use case of Codex problem solving. 

Figure 4 shows the overall operational workflow, 
using the BPMN standard. Specifically, circles, 
rounded rectangles, and diamonds represent events, 
tasks and decision/merge nodes, respectively. The 
overall process starts on the top-left, with the 
Application Controller (AC) providing a user 
interface for the input problem. Then, the AP 
formulates the problem for Codex, which in turn 
generates the Python function. Subsequently, the AP 
formulates the function call for Codex, which 
generate it. Finally, the AP asks the Python 
Interpreter (PI) for code execution. After completing 
the code execution, or after a timeout, the PI provides 
the results to the AC. If a detectable error occurs, the 
AP asks a newly generated function to restart, 
otherwise the AP outputs the solution. 

3 EXPERIMENTAL RESULTS 

The proposed approach, called Math-Codex Zero 
Shot Learning (MC-ZSL), has been implemented, 
tested, and publicly released on the GitHub platform 
(Galatolo, 2021), to foster its application on various 
research environments. 

The MC-ZSL has been compared with the GPT-
3-ZSL, using the test set of the GSM8K benchmark 
corpus. Overall, GSM8K consists of 8.5 thousand 
high quality grade school math problems, created by 
human problem writers (Cobbe, 2021). Specifically, 
the test set is made by 1319 problems. The math 
problems require between 2 and 8 steps to be solved. 
The solutions involve performing a sequence of 
elementary calculations using basic arithmetic 

operations. An excerpt of representative problems is 
published on (Galatolo, 2021). 

Overall, a detectable error has been found in the 
7.99% of cases: 3.73% invalid program, 4.19% 
exception raised, and 0.07% halt). The final 
percentage of correct solutions is 18.63% for MC-
ZSL against 6.82% of GPT-3-ZSL, which 
demonstrate the effectiveness of the proposed 
approach. 

 

Figure 4: A BPMN operational workflow of the proposed 
solution, based on application controller, Codex, and 
Python interpreter. 



Very recently, Cobbe et al. (2021) proposed to 
train a verifier to evaluate the correctness of 
generated solutions. In general, verification is a 
simpler task with respect to generation.  

The idea is to verify model generated solutions at 
test time. Since the verifier outputs a probability that 
the solution is correct, multiple trials of the same 
problem can be carried out. Each solution can be 
ranked with the verifier, and then the solution with the 
highest verifier score can be returned.  

Figure 5 shows the percentage of correct solution 
against the number of trials, provided by the MC-
ZSL. It can be considered the performance with an 
ideal verifier (i.e., providing 100% of probability that 
the solution is correct). 

 For one trial, the percentage is 18.63%, but with 
two and three trials is 27.56 and 33.33%, respectively. 
To show the potential of this approach, it can be noted 
that with ten trials the percentage becomes 54.20%. 

 

 

Figure 5: Percentage of MC-ZSL solve rate against number 
of trials. 

4 CONCLUSIONS 

This work explores and measures the effectiveness of 
the most recent deep learning models for solving 
grade school math tasks described in natural 
language. The proposed approach shows that 
problem-solving based on computer coding is more 
effective than problem-solving based on natural 
language reasoning. 

A pipelined solution is designed, based on 
OpenAI Codex. Experimental results clearly show the 
potential of the approach: the Codex achieves 18.63% 
solve rate against the 6.82% of GPT-3. 

Further improvements can be achieved by using 
verifiers. The proposed approach has been 
implemented, tested, and publicly released on the 

GitHub platform, to foster its application on various 
research environments. An excerpt of significant 
cases has been included in appendix. 
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APPENDIX 

It follows some selected sample problems (P) from 
the GSM8K data set, the related solution (S), the 
related solution provided by MC-ZSL (SC), and 
finally the solution provided by GPT-3-ZSL (SG). 

Problem N.2 

P Josh decides to try flipping a house. He buys a 
house for $80,000 and then puts in $50,000 in 
repairs. This increased the value of the house by 
150%. How much profit did he make? 

S 70,000 
SC def house_flipper(house_value, 

repair_cost): 
profit = (1.5 house_value) – 

repair_cost 
return profit 

house_flipper(80000,50000) 
70000 

SG $20,000. He sold it for$120,000. 
$80,000 -$50,000 = $30,000. 
$30,000 /$80,000 = $0.375. 
$0.375 x 150% = $0.50. 
$30 

 

Problem N.3 

P James decides to run 3 sprints 3 times a week. He 
runs 60 meters each sprint. How many total meters 
does he run a week? 

S 540 
SC def total_meters(sprint_distance, 

num_sprints, num_weeks): 
return sprint_distance 

num_sprints num_weeks 
total_meters(60,3,3) 
540 

SG James runs 60 meters 3 times a week. He runs 180 
meters total a week. 

 

Problem N.4 

P Every day, Wendi feeds each of her chickens three 
cups of mixed chicken feed, containing seeds, 
mealworms and vegetables to help keep them 
healthy. She gives the chickens their feed in three 
separate meals. In the morning, she gives her flock 
of chickens 15 cups of feed. In the afternoon, she 
gives her chickens another 25 cups of feed. How 
many cups of feed does she need to give her 

chickens in the final meal of the day if the size of 
Wendi’s flock is 20 chickens? 

S 20 
SC def chicken_feed( 

number_of_chickens, 
morning_feed, 
afternoon_feed): 

return morning_feed + afternoon_ 
feed – number_of_chickens 

chicken_feed(20, 15, 25) 
20 

SG 15 + 25 + X = 60 

Problem N.5 

P Janet’s ducks lay 16 eggs per day. She eats three 
for breakfast every morning and bakes muffins for 
her friends every day with four. She sells the 
remainder at the farmers’ market daily for $2 per 
fresh duck egg. How much in dollars does she 
make every day at the farmers’ market? 

S 18 
SC def problem_1(num_ducks, 

num_ducks_eaten, 
num_muffins_made, 
num_muffins_sold): 

return (num_ducks 16)− 
(num_ducks_eaten 3)− 
(num_muffins_made− 
Num_muffins_sold) 2 

problem_1(3,1,4,3) 
43 

SG $3.20 
 
 


