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Concept-wise granular computing for explainable artificial intelligence

Antonio Luca Alfeo1,2 • Mario G. C. A. Cimino1,2 • Guido Gagliardi1,3,4

Abstract
Artificial neural networks offer great classification performances, but their internal model works as a black box. This can

prevent their outcomes to be employed in real-world decision-making processes, e.g., in smart manufacturing. To address

this issue, the neural network should provide human-comprehensible explanations for their outcomes. This can be achieved

by exploiting domain concepts and measuring their importance for the classification. To this aim, we implement an

information granulation process via a neural network specifically trained to represent data instances featuring the same

(different) concept’s item close to (far away from) each other. By combining the representations for each concept, we

obtain the so-called conceptual space embedding. The classification is obtained by processing it via a neural network

classifier. The conceptual space embedding (i) organizes the data instances according to their concepts-wise proximity,

resulting in a very informative data representation; this translates into greater classification accuracy if compared to a

concept-wise approach from the state-of-the-art; and (ii) encodes each concept in one of its parts; this enables the

measurement of the importance of one concept by manipulating the corresponding part of the conceptual space embedding.

The proposed approach has been tested with real-world data from smart manufacturing.

Keywords Granular computing � Neural networks � Representation learning � Smart manufacturing � Concept importance �
EXplainable artificial intelligence

1 Introduction and motivation

Thanks to the adoption of the industry 4.0 paradigm, the

approaches based on artificial neural networks (ANN) are

more and more employed in manufacturing (Alfeo et al.

2020). If integrated with the decision-making processes,

this technology can improve the quality assessments of

both production and business processes (van Zelst et al.

2021), resulting in a remarkable improvement in produc-

tivity (İç and Yurdakul 2021). Despite the unprecedented

classification performances provided by state-of-the-art

ANN architectures, their internal model works as a black

box. As a result, the ANN classifications cannot be easily

validated by domain experts (Alfeo et al. 2022b), and thus

employed for the decision-making processes (Ahmed et al.

2022).

EXplainable Artificial Intelligence (XAI) approaches

address this limitation by providing some explanations for

ANNs’ model (Alfeo et al. 2022a). Employing XAI

approaches in the context of smart manufacturing can

result in numerous benefits such as improved debugging of

ANN-based systems, classification errors mitigation, and

production cost reduction (Ahmed et al. 2022).

The explanations can feature one of the following three

forms (Miller 2019). (i) Rule-based explanations approxi-

mate the decision process of the ANN via a set of rules, e.g.

associate classes to thresholds for some data attributes

(van der Waa et al. 2021); (ii) Instance-based explanations

associate an instance classified by the ANN to the
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prototype of the same class or to similar instances from

different classes, to validate the classification results

according to their similarities and differences (Delaney

et al. 2021); and (iii) feature importance explanations

generate a rank of all the data attributes by considering the

importance of each attribute to the classification (Afchar

et al. 2021).

The latter is the most used explanation form due to the

many established publicly-available approaches providing

a rank of the features’ importance to the classification. Yet,

the extensive use of feature-importance approaches has

exposed their limitations. Feature importance approaches

(i) may result in verbose explanations which are hardly

interpretable by the decision-makers (Confalonieri et al.

2021; ii) may be sensitive to dependencies and correlation

between features, which can affect the importance score

computation (Basu and Maji 2022); and (iii) leave a sig-

nificant interpretive burden to the decision-makers, that

have to assess and motivate the importance of each data

attribute to validate the classifications of the ANN model

(Apicella et al. 2020).

XAI researchers are addressing these weaknesses by

providing explanations in terms of a higher-level input

representation, i.e. domain concepts (Kim et al. 2018). If

properly chosen, domain concepts are supposed to be rel-

evant for the classification, less numerous than data attri-

butes, and clearly understandable by the decision-makers

(Ghorbani et al. 2019). Concept-based approaches can be

considered as an intersection between the great represen-

tation capability of opaque connectionist AI models (e.g.,

ANN) and symbolic AI models, that are characterized by

lower generalization and scaling capabilities but are

definitively easier to explain (Dı́az-Rodrı́guez et al. 2022).

As an example, the concept-based approach proposed in

(Kazhdan et al. 2021) detects the occurrence of higher-

level concepts in a data instance by analyzing the activa-

tion patterns of the ANN nodes. Other concept-wise

approaches exploit images as input. This results in easy-to-

validate explanations since the occurrence of a concept

(e.g., a particular background) can be immediately recog-

nized by a human observer (Kazhdan et al. 2021). How-

ever, in smart manufacturing, the data are usually available

in tabular form. Some concept-wise approaches for tabular

data may partially compromise recognition performances

to obtain explanations based on concepts (Hitzler and

Sarker 2022). The approach proposed in this work

addresses these challenges, resulting in improved classifi-

cation performance and concept-importance computation

for tabular data.

To exploit the methods used for the computation of the

feature importance to obtain a measure of the concept-

importance, it is required to transform the space of the

analysis, from a feature space to a ’’conceptual space’’.

This can be obtained via an information granulation pro-

cess. Indeed, information granules are obtained by group-

ing data instances via a criterion of similarity or

functionality (Song and Wang 2016). For instance, this can

be achieved via context-based clustering (Pedrycz 1998).

This approach represents the input space as information

granules by clustering the data instances using a collection

of predefined sets (i.e. the contexts) defined in the output

space. Similarly to contexts in (Pedrycz 1998), it is pos-

sible to define some domain-knowledge concepts and use a

supervised training procedure (Alfeo et al. 2017) to learn a

representation of the input space that allows granulating

data instances according to their concepts-wise proximity

(Qi et al. 2019). To this aim, a representation learning

approach can be employed. Representation learning

approaches are designed to build manifolds by grouping

similar items, e.g. in the latent space of a neural network.

These approaches are used to transform the data instances

into simpler representations in the latent space, which are

more convenient to be employed in a classification task.

Interested readers may refer to Bengio et al. (2013).

The contributions of this research work can be sum-

marized as follows:

• We propose a novel architecture employing supervised

representation learning to perform concept-wise infor-

mation granulation. The obtained data representation

can be employed for the classification while enabling

the evaluation of the importance of each concept for the

ANN model.

• The proposed information granulation approach enables

both the representation of the feature-wise and con-

cepts-wise proximity between data instances. This

results in a more informative input representation, and

thus better classification performances if compared with

other concept-based approaches.

• The importance of each concept for the ANN model is

measured via a novel procedure that can also be

exploited by other concept-based approaches.

The proposed architecture is tested using real-world data

from smart manufacturing. Specifically, the production

settings and the characteristics of the raw material are used

to classify the quality level of the final product. The con-

cepts are provided by domain experts as additional infor-

mation (e.g., production operative conditions) for each

production instance.

The paper is structured as follows. Section 2 presents

the background and related works. Section 3 details the

proposed approach. The case studies and the experimental

setup are presented in Sect. 4. Finally, Sect. 5 details the

obtained results, and Sect. 6 discusses results and outlines

conclusions, respectively.



2 Related works

Information granulation approaches aim at abstracting the

complexity of the data by re-arranging the instances into

semantically structured clusters. This enables the decom-

position of the original problem into more manageable sub-

tasks (Song and Wang 2016). For instance, hand-written

symbols can be represented and recognized as groups of

strokes (Lake et al. 2015). The academic community has

recently focused on the emergence of these semantically

relevant information granules in the latent space of ANNs

to better explain their reasoning.

For instance, the authors in (Bau et al. 2020) indicate

how artificial neurons can be explicitly triggered by

human-understandable concepts, even if such networks

were not explicitly trained to encode them. Lower-layer

neurons can encode notions like textures and edges in

image recognition tasks (Dı́az-Rodrı́guez et al. 2022),

whereas higher-layer neurons can encode notions like

specific objects and abstract emotions (Zhou et al. 2015).

However, understanding if and which ANN nodes rep-

resent a human-understandable concept remains an open

research question, as proved by different posthoc analyses

on trained ANNs (Chen et al. 2020). For instance, the

authors in (Zhou et al. 2018) show an alignment between

high-level semantic concepts and some nodes in the neural

network, but these nodes do not provably contain the net-

work’s full information about the concepts. In summary,

rather than triggering a specific part of the neural network,

the information about one concept could be scattered

throughout the whole network.

To address this issue, instead of looking at individual

nodes, their activation can be linearly combined to repre-

sent some predefined higher-level concepts (Kim et al.

2018). Concept Activation Vectors are vectors in the latent

space of an ANN that are specifically chosen to align with

predefined or automatically discovered concepts (Ghorbani

et al. 2019). Still, most of those approaches work under the

assumption that a trained ANN ’’places’’ each concept in

one easy-to-classify portion of its latent space. However,

since the latent space was not explicitly built to have this

property, there is no reason to believe that the above

assumption holds (Chen et al. 2020). Rather than relying

on these assumptions, it is convenient to explicitly con-

strain the latent space of an ANN during its training (Chen

et al. 2020). As an example, the authors in (Koh et al.

2020) constrain the latent space of the ANN to represent

semantically meaningful concepts while performing the

classification.

Concept formation and learning is one promising gran-

ular computing research area, aimed at performing the

classification by combining concepts isolated as

information granules (Salehi et al. 2015). In this regard,

different strategies can be implemented to learn or isolate

the target concepts (Hu et al. 2014). To enable an infor-

mation granulation process based on a concept-wise

semantic, we exploit an approach based on supervised

representation learning, which is specifically designed to

organize the latent space of the ANN, i.e., aggregating

(separating) instances belonging (not belonging) to the

same concepts.

The proposed approach share some similarities with

other existing research works. Similarly to (Kazhdan et al.

2021), the proposed approach combines concept-wise

classification and representation learning; however, the

approach presented in (Kazhdan et al. 2021) exploits an

unsupervised AI approach designed for image data. Simi-

larly to (Koh et al. 2020), the employed concepts are

human-specified; however, using the approach presented in

(Koh et al. 2020) each concept is represented via one single

direction of the latent space, which may result in infor-

mation loss.

To the best of our knowledge, this is the first attempt to

obtain concept-wise explainability (i.e., the concept-im-

portance) for an ANN model by implementing an infor-

mation granulation process via a supervised representation

learning approach.

3 Design

In this section, the design of the proposed architecture is

detailed. It consists of three functional modules, i.e. the

conceptual space projectors, the quality level classifier, and

the concept importance computation procedure.

The Conceptual Space Projector (CSP) enables the

information granulation process by grouping the instances

according to one concept c. The CSP is a neural network

whose latent space is constrained through a representation

learning approach. This is explicitly designed to place

instances characterized by the same concepts in proximity

to each other in the latent space.

More specifically, the CSP consists of a fully connected

multi-layer perceptron (MLP) trained using the concept’s

items and the multi-similarity loss, as training labels and

loss function respectively. The multi-similarity loss

employs the inverse of the Euclidean distance (dA;N and

dA;P in Fig. 1) as a measure of the similarity between 3 data

points in the latent space, i.e., the anchor (A), the positive

sample (P), and the negative sample (N). A is an instance

characterized by the same concept item as P. Instead, A and

N are characterized by different concept items. Via the

multi-similarity loss (Eq. 1), the CSP is trained to provide a

representation in which the similarity between A and P is



greater than the similarity between A and N. Considering

the whole training batch, the multi-similarity loss maxi-

mizes the similarity Si;p between each anchor i and all the

positive samples p 2 Pi while minimizing the similarity Si;n
between the anchor i and all the negative samples n 2 Ni.

a, b and k are parameters of the loss function. Interested

readers may find more details in (Wang et al. 2019). The

implementation of the multi-similarity loss has been

released by Google in September 2021 with the Python

package TensorFlow similarity.

MSLoss ¼ 1

m

Xm

i¼1

1

a
log 1þ

X

p2Pi

e�aðsi;p�kÞ

"(

þ 1

b
log 1þ

X

n2Ni

ebðsi;n�kÞ

" #) ð1Þ

Once trained, the CSP projects the data instances in its

latent space, which is ordered in a concept-wise fashion.

However, not only the concept-wise similarity is repre-

sented in such a latent space. Using a supervised repre-

sentation learning approach, the instances’ representations

are obtained as a nonlinear transformation of the feature

space. As such, the CSP allows the similarity of the

instances in the feature space to be represented as well. As

shown in (Wang et al. 2019), adjusting the dimension of

the latent space allows the proximity between instances in

the feature space to be better represented. This can result in

a more informative input for the subsequent classification

tasks and thus in greater recognition performances.

The Conceptual Space enCodings CSCi;c is the repre-

sentation obtained via the CSP trained for concept c (CSPc)

for the input instance i. By concatenating the p-dimen-

sional projections obtained with all the CSPs (Fig. 2), we

obtain the c� p-dimensional Conceptual Space Embed-

ding (CSE) that is ordered according to all concepts and

represents one of them in each of its parts. As represented

in Fig. 2, the information granulation process is effectively

provided by training the CSPs via multi-similarity loss and

concatenating the representations learned for each concept.

The CSE spatially organizes the instances according to

their similarity in the feature space and their concepts-wise

similarities.

The quality level classifier (QLC, Fig. 1) processes the

CSE to classify the product quality level. It is implemented

as a fully connected multi-layer perceptron trained via the

log loss function (Eq. 2). In Eq. 2, m is the number of

samples in the training batch, C is number of classes, x is

binary indicator (0 or 1) if class label c is the correct

classification for sample i, and p is the probability that

sample i belongs to class c.

LogLoss ¼ � 1

m

Xm

i¼1

XC

c¼1

xi;jlogðpi;jÞ ð2Þ

As for the CSPs, the QLC employs the rectified linear unit

(Relu, Fig. 3 and Eq. 3) as the neurons’ activation function.

Relu is among the most widely used activation functions

since it offers a great trade-off between computational

complexity and recognition performance Stursa and Dole-

zel (2019).

ReluðzÞ ¼ maxð0; zÞ ð3Þ

Algorithm 1 shows the training procedure of the whole

architecture. The procedure starts by training each CSP

individually using the multi-similarity loss function (Eq. 1).

Once trained, the CSPc can produce the Conceptual Space

enCoding (CSCc) for the training data. The Conceptual

Fig. 1 a The architecture of the conceptual space projector, a multi

layer perceptron featuring 3 hidden layers and trained via multi

similarity loss. b The representations of the conceptual space

evolution due to the training via multi-similarity loss; the distance

between samples characterized by the same concept item (other

concept item) is minimized (maximized) resulting in an ordered latent

space. c The product quality level classifier, a multi layer perceptron

classifier featuring 3 hidden layers and trained via the log loss

function



Space Embedding (CSE) for the training instances is

obtained by concatenating the CSCs obtained with those

instances for each concept. This is used to train the quality

level classifier (QLC) via the LogLoss function (Eq. 2). As

a result of the training procedure, the trained CSPs can

produce a concept-wise representation of the input instan-

ces, and this can be processed by the trained QLC to

classify the product quality level. Moreover, the CSE

obtained with the training instances can be employed for

the explanation procedure.

Fig. 2 Simplified representation of some instances being processed

via the proposed architecture. The production parameters are the

instances in the feature space (grey circles). Each CSP learns a

representation (the CSC) of those instances in the latent space. Such

latent space is ordered considering the items of one concept (colored

circles). The concatenation of all the CSCs, i.e., the CSE, is a

representation ordered according to all the concepts, allowing the data

instance to cluster according to their concept-wise proximity (multi-

colored circles). The CSE is used as an input for the quality level

classifier

Fig. 3 The Relu activation function



Once trained, the architecture can classify the product

quality level by processing new instances via each com-

ponent of the architecture. In Algorithm 2, CSCc;t is the

representation obtained via each CSPc for a new instance

of the production parameters t. Those representations are

concatenated to obtain the CSEt for the new instance. The

CSEt is then provided as input to the QLC which recog-

nizes the final product quality level qt.

Both the trained QLC and the CSE obtained for the

training instances are used to measure the importance of

each concept for the classification. The concept importance

computation procedure (CICP) is inspired by two expla-

nation procedures from the state-of-the-art.

The first procedure (Lucieri et al. 2020) is designed to

explain the importance of concepts in an image recognition

task. This approach evaluates how the recognition perfor-

mance is affected by occluding the part of the image cor-

responding to each concept. In our case, the architecture

employs tabular data (the CSEs are numeric arrays) thus

the occlusion of each concept needs to be properly tailored,

i.e. considering that the CSE can be broken down into

CSCs and that each CSC represents a concept.

The second procedure (Adadi and Berrada 2018) is the

well-known permutation importance approach. Given a

trained model and a set of input instances, the permutation

importance approach produces an importance score for

each feature in the model. The importance is computed by

randomly permuting the rows of one feature and consid-

ering how this affects the final classification performance.

This procedure breaks the relationship between one feature

and the target class. The drop in the performances repre-

sents how much the model depends on the permuted fea-

ture. One issue of the permutation importance approach is

that it evaluates the impact of the permutations one feature

at a time, and does not consider their joint contribution. For

instance, if two important features are strongly correlated,

permuting one of those does not necessarily remove their

information from the model, and thus it does not translates

into a performance drop. For this reason, more innovative

feature importance approaches, e.g., SHAP (Lundberg and

Lee 2017), evaluate the importance of one feature f by

considering the performances obtained with every subset of

features including f.

We combine these strategies to compute the concepts

importance. First, all the possible combinations of subsets

of concepts are generated. Then, the concepts non included

in the subset are ’’occluded’’ by permuting the CSCs cor-

responding to those concepts. Finally, those are concate-

nated to obtain the CSE and passed to the QLC to evaluate

the impact on the classification performances.

More specifically, we generate a list of all possible

concepts combinations called conceptInclusionCombo,

with 2c elements made of c booleans. Each boolean kci;k¼y

represents the inclusion (1) or the occlusion (0) of a con-

cept i in the combination y. Eq. 4 represents the general-

ization of conceptInclusionCombo (CIC) whereas Eq. 5

represents an example of conceptInclusionCombo in the

case with a number of concepts equal to 3.

CICðCÞ ¼

ic1;k¼1 ic2;k¼1 . . . icc;k¼1

ic1;k¼2 ic2;k¼2 . . . icc;k¼2

. . . . . . . . . . . .

ic1;k¼2c ic2;k¼2c . . . icc;k¼2c

2

6664

3

7775 ð4Þ

CICðCÞ ¼

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

2

66666666666664

3

77777777777775

with kCk ¼ 3 ð5Þ

Once all combinations of subsets of concepts have been

generated, for each combination k, the rows of CSCs cor-

responding to the occluded concepts are (i) permuted ele-

ment by element, (ii) concatenated to obtain the CSEk, and

(iii) passed as inputs to the QLC to compute the classifi-

cation performance (Fig. 4). The importance of a concept

is computed as the rescaled average of the classification

performances obtained with all combinations in which the

concept is included. The rescaling operation is needed to

decouple the classification performance and the number of

included concepts; those are indeed supposed to be corre-

lated due to the greater informativeness of a CSE with



fewer occluded parts. Specifically, the performances

obtained with all the concepts combination is grouped

according to the number of included concepts, then nor-

malized via a MinMax procedure (Eq. 6) and averaged

considering the combinations in which the concept is

included (Algorithm 3). The resulting concept importance

measure is bounded between 0 (worst case) and 1 (best

case).

MinMaxðx;XÞ ¼ x� minðXÞ
maxðXÞ � minðXÞ ð6Þ

4 Case study and experimental setup

In this section, the experimental dataset and the experi-

mental setup are described.

We employ a real-world dataset provided by a company

that produces industrial machines for manufacturing tissue

paper, i.e., the Koerber Tissue. Each machine consists of

two main components: the rewinder and the embosser. The

rewinder unwinds the reels of raw paper layers, stacks

them, and passes them to the embosser. The embosser

exploits rubber and steel rolls to press and glue those layers

while imprinting a motif on the paper.

Each new machine is tested using different types of

paper and production settings, e.g., by varying some

parameters such as the rewinder speed or the embossing

pressure. Each test is recorded in a table, considering both

the production settings employed and some measurements

taken on the final product. These measurements include

different quality-related characteristics of the final product,

such as paper bulk and resistance. These characteristics can

be described via levels (i.e., high, medium, low). The

company would be interested in recognizing the quality

level of the final product according to the specific pro-

duction setup.

As with many real-world dataset, the table provided by

the company is characterized by a significant presence of

missing values. To cope with this issue, the data is pre-

processed via the procedure depicted in Fig. 5. Firstly, all

the columns and rows with a percentage of missing values

greater than 50% are removed. Then, the data instances are

grouped considering the categorical features that do not

present missing values. For each feature, the numerical



missing value of one data instance is replaced with the

median of its cluster.

The resulting dataset consists of more than 650 instances

and 11 informative features, as exemplified in Table 1. In

Table 1 for confidentiality reasons, the specific information

and names of the industrial components have been replaced

with labels , e.g., A, B, and C. The features have the fol-

lowing meanings:

• ID, a unique identifier of each test measurements; it is

not considered an informative feature and thus it is

removed from the analysis

• Bulk, the quality-related characteristic of the final

product; it consists of three levels (low, medium, and

high)

• Res Lon (RLO) and Res Lat (RLA), the strength of the

raw paper in the longitudinal and latitudinal directions;

it is measured in Newtons per meter

• Stretch (STR), the percentage of elongation of the raw

paper in the longitudinal direction, if wet

• Paper weight (PWE), the weight of the raw paper; it is

measured in grams per square meter

• Rubber roll hardness (RRH), the hardness of the rubber

roll used to imprint a motif on the paper; it is measured

in Shore A

• Tissue Layers Coupling (TLC), the process aimed at

coupling different tissue layers. Can be ’’molded’’ (M),

’’unmolded’’ (UM), or ’’glued embossing’’ (GE).

• Rewinder and Embosser model (REW, EMB), a unique

identifier for the models of these components

• Bottom and Top Roll pattern (BRP, TRP), a unique

identifier of the motif characterizing the embosser rolls

• Paper structure (PSTR), a boolean indicating whether

the raw paper is regular (No) or structured (Yes)

The proposed concept-based architecture requires some

domain knowledge to specify which concept is represented

by each data instance. In our case study, the concepts are

chosen with the support of different domain experts who

specified both the concepts and their expected importance

for the classification. This is critical for the analysis since it

represents the ground truth for the model explanation. This

can be employed for testing the system’s ability to distin-

guish concepts characterized by different importance

levels. Specifically, we have two concepts of major and

two concepts of minor importance for our classification:

• Type of Product: the type of product being manufac-

tured. The items for this concept are House Hold Towel

and Bathroom Rolls Tissue. Major importance for the

classification.

• Tissue Layers: the number of tissue layers in the final

product. The items for this concept are integers ranging

from 1 to 4. Major importance for the classification.

• Stretch Lat: the percentage of elongation of the raw

paper in the latitudinal direction, if wet. The items for

this concept are two levels, high and low. Minor

importance for the classification.

• Dry stretch ratio: the ratio of the raw paper resistance in

the longitudinal and latitudinal directions, if dry. The

items for this concept are two levels, high and low.

Minor importance for the classification.

To be processed by an ANN, each numerical feature is

rescaled between 0 and 1 via a min-max procedure (For-

mulae 6). Moreover, each categorical feature is processed

via a one-hot encoding procedure, i.e., replacing categori-

cal labels with binary encodings of their enumerates.

Fig. 4 Simplified representation of the concept importance compu-

tation procedure

Fig. 5 The steps of the preprocessing procedure used to handle the

missing values in the data



All the experiments are performed using a Monte Carlo

10 folds validation framework. The performances obtained

are presented via their mean and variance. As the main

performance measure for the classification, we use the

accuracy (Formulae 7). In Formulae 7, Ci is one if the

classification of instance i is correct, zero otherwise.

Accuracy ¼ 1

N

XN

i¼1

Ci ð7Þ

5 Results and discussion

This section details the experimental results obtained with

the proposed architecture, i.e., the Conceptual Space

Embedding (CSE).

Firstly, we show the results obtained via a parametric

exploration of the CPSs dimension. Then, the classification

accuracy obtained with CSE is compared against Concept

Activation Vector (Hitzler and Sarker 2022), a concept-

wise approach from the state-of-the-art. Finally, the

importance of the concepts is measured via the concept

importance computation procedure using both CSE and

Concept Activation Vector.

The most important parameters of CSE is the size of the

Conceptual Spaces enCoding. On one hand, a bigger

encoding may correspond to a richer data representation

(Wang et al. 2019). On the other hand, a bigger encoding

can result in more complex distance evaluation within the

training batch and thus, potentially, into a weaker concept-

wise granulation. To understand how the size of the Con-

ceptual Space enCoding affects the classification, we

consider the accuracy of the QLC by varying the size of the

CSCs from 3 to 6.

As shown in Table 2, the best classification accuracy is

obtained with a CSC size equal to 5. The potentially

weaker information granulation obtained with greater CSC

sizes does not translate into better performances. For this

reason, we consider 5 as the CSC size for the following

experiments.

We test the proposed architecture against a state-of-the-

art concept-wise approach, i.e., Concept Activation Vector

(Hitzler and Sarker 2022). For a fair comparison, both

Conceptual Space Embedding and Concept Activation

Vector (CAV) employ computationally similar compo-

nents: a three-layers MLP for each concept, and a three-

layers MLP for the final quality classification. Each Con-

ceptual Space Projector produces a representation consist-

ing of 5 elements. Considering 4 concepts, this results in an

input for the QLC consisting of 20 elements. On the other

hand, Concept Activation Vector (CAV) produces a rep-

resentation consisting of all the membership scores for

each concept. Those are obtained as the concatenation of

the softmax activation of the last layer of the MLPs.

Considering 3 binary concepts (i.e., type of product, stretch

lat, dry stretch ratio) and one 4-class concept (i.e., tissue

layers), it results in an input for the QLC consisting of 10

elements.

To have a fair performance comparison, the hyper-pa-

rameters of both approaches are independently optimized.

Since all the MLPs used in these architectures feature the

same structure, we employ the same hyper-parameters and

value set for their optimization, as summarized in Table 3.

Table 1 Example of the data

used for this study. For

confidentiality reasons, specific

information and the names of

the industrial components have

been replaced with generic

labels (A, B and C). Moreover,

the values of the rows in each

column are randomly swapped

ID Bulk RLO RLA STR PWE RRH REW EMB TLC BRP TRP PSTR

f4505 LOW 61.67 122.34 4.63 20.72 58 A A UM A B Yes

ac053 HIGH 66.31 122.34 5.41 20.72 59 B B M B A Yes

45057 LOW 52.34 118.92 4.75 23.87 62 C A UM A C Yes

45052 MED 66.31 112.94 6.29 22.82 61 B A UM C B Yes

45054 MED 52.37 116.81 5.07 21.93 59 B C M C C No

45058 LOW 65.03 116.81 5.06 21.92 55 A B GE B A No

4d886 HIGH 95.18 124.38 3.86 20.36 62 A B GE A A No

24d883 HIGH 88.31 100.64 3.68 20.12 62 A B M C C Yes

952f38 LOW 58.73 118.17 4.62 20.61 59 C C GE A B No

. . . . . . . . . . . . .

952f3a MED 61.67 118.17 4.63 20.64 57 C C GE C C Yes

Table 2 Classification accuracy (percentage) by varying the size of

the CSCs, average and standard deviation obtained via a 10-cross fold

validation

CSCs size %Accuracy� St:Dev:

6 75:73� 3:64

5 77:88� 3:79

4 74:65� 4:22

3 72:97� 4:36
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The optimization of each architecture component is

carried out on its own. Each CSP is optimized considering

the accuracy obtained via a 3-NearestNeighbors classifier

employing the representations provided by the CSP. With

all the other MLPs, the accuracy obtained while classifying

their target label (i.e., quality level or concept) is consid-

ered. Table 4 shows the results obtained via the hyper-

parameters optimization; the classification performances

are in terms of percent accuracy (average and standard

deviation). According to the results shown in Table 4 CSE

is significantly more accurate than CAV.

By considering the optimal hyper-parameters for both

CSE and CAV, we measure the importance of each concept

via the concept importance computation procedure (Algo-

rithm 3). We compare this measure with the ground truth

about the importance of each concept, as provided by the

domain experts. The obtained results are presented in

Table 5.

According to the results in Table 5, CSE and CAV result

in similar concept importance ranks and are both able to

distinguish between concepts characterized by major and

minor importance. Both ranks represent a correct solution

for the concept importance evaluation. However, the

ranking obtained with the two architectures do differ on the

most important concepts.

Moreover, by comparing the concept importance mea-

sures obtained with CSE and CAV, the latter allows a

clearer distinction between concepts of different impor-

tance. More specifically, the concept importance measures

obtained with CAV are characterized by a lower variability

among concepts of the same importance level (i.e., major

or minor) and higher variability among concepts of dif-

ferent importance levels.

Indeed, since CSE allows a richer representation of the

data, when a concept is occluded the QLC can still rely on

the information from the input space obtained via the other

CSCs. For this reason, the performances of QLC are less

affected by concept occlusion with CSE.

These considerations are confirmed by the box plots

shown in Figs. 6 and 7. Considering the accuracy obtained

with the QLC by varying the number of non-occluded

concepts, CSE is less affected by the number of occluded

concepts if compared to CAV. Indeed, the accuracies

obtained with CAV grow almost linearly with respect to

the number of non-occluded concepts. On the other hand,

CSE results in a more asymptotic accuracy growth. This

also suggests that CSE needs fewer concepts to achieve the

Table 3 Values considered for the optimization of the architectures’

hyper-parameters

Hyper-parameter Values

Batch size 8, 16, 32

Early stopping patience 4, 8, 12

First MLP layer 128, 64, 32

Second MLP layer 64, 32, 16

Third MLP layer 16, 8

Table 4 Conceptual space embedding and Concept Activation Vector

after the optimization of the hyper-parameters. classification accuracy

(average and standard deviation) with a Monte carlo 10-fold

validation

Method %Accuracy� Std

Conceptual space embedding 78:19� 3:62

Concept activation vector 70:97� 2:68

Table 5 The concept importance values obtained with CSE and CAV,

the resulting concept importance rank, and the ground truth provided

by the domain experts

Method Concepts Import Rank G. Truth

CSE Product type 58.02 1 MAJOR

Tissue layers 55.70 2 MAJOR

Stretch lat 52.74 4 MINOR

Dry stretch r. 54.66 3 MINOR

CAV Product type 61.52 2 MAJOR

Tissue layers 74.91 1 MAJOR

Stretch lat 40.74 4 MINOR

Dry stretch r. 47.38 3 MINOR

Fig. 6 Accuracy by number of non occluded concepts with Concep-

tual Space Embedding



same or greater results with respect to CAV, thanks to the

richer data representation learned by the CSPs.

6 Conclusion

In this work, a novel explainable artificial intelligence

architecture is proposed, i.e., the Conceptual Space

Embedding (CSE).

CSE employs an information granulation process to

effectively decompose the target problem in a concept-wise

fashion. The information granulation is provided via a

supervised representation learning approach aimed at pro-

jecting the data instances according to their concept-wise

proximity. The projections obtained with each concept are

concatenated to obtain the conceptual space embedding,

which organizes the instances according to all concepts and

represents one of them in each of its segments.

This allows using an occlusion-like explanation proce-

dure to measure the importance of each concept for the

classification based on the CSE.

The considered case study addresses the recognition of

the quality level of the final product in a real-world smart

manufacturing. The domain experts provided the concepts

employed in this study, together with their expected

importance levels (major and minor) for the classification.

To the best of our knowledge, this is the first architec-

ture providing concept-wise explainability (i.e., the concept

importance measure) by implementing an information

granulation process via supervised representation learning.

The proposed approach is compared against a state-of-

the-art concept-wise approach, i.e., Concept Activation

Vector. The obtained results confirm that CSE enables a

more informative data representation, and thus significantly

better classification accuracy.

Finally, the importance of each concept for the classi-

fication is measured via a novel procedure that can also be

exploited by other concept-based approaches. Indeed, this

is employed to measure the importance of each concept

both for CAV and CSE. By considering the ground truth

for the importance of each concept, both CSE and CAV

result in correct concepts’ importance rank.

Moreover, by considering how the classification accu-

racy changes according to the number of non-occluded

concepts, CSE results to be less sensitive to concept

occlusion if compared to CAV. This suggests that CSE can

obtain greater classification performances by employing

fewer concepts. Indeed, the median value of the accuracy

with one non-occluded concept is 44.62% for CAV and

65.39% for CSE. On the other hand, the greater sensitivity

of CAV to concept occlusion results in a clearer separation

between different concepts’ importance levels.

Future developments will focus on improving the con-

cept importance computation procedure, to allow different

importance levels to be more clearly separated.

Moreover, we will employ an information granulation

process consisting of different granulation levels, resulting

in a hierarchical concept-wise approach. A first granulation

level can represent concepts very related to the feature

space. The projection obtained via the first level of CSPs

can be passed to the next information granulation level.

The latter can represent higher-level abstraction concepts,

i.e., specific to the domain knowledge. The resulting

architecture should be able to further improve the classi-

fication performances and explain the ANN model at dif-

ferent abstraction levels.
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