
From local counterfactuals to global feature importance:
efficient, robust, and model-agnostic explanations for brain

connectivity networksAntonio Luca Alfeo, Antonio G. Zippo, Vincenzo Catrambone, Mario G.C.A. Cimino, Nicola
Toschi, Gaetano Valenza

This is a preprint. Please cite using:

@article{from2023,
    author={Alfeo, Antonio Luca and Zippo, Antonio G. and Catrambone, Vincenzo and Cimino, Mario G.C.A. and Toschi, Nicola and Valenza, Gaetano},
    title={From local counterfactuals to global feature importance: efficient, robust, and model-agnostic explanations for brain connectivity networks},
    journal={Computer Methods and Programs in Biomedicine},
    year={2023},
    volume={236},
    pages={107550},
    publisher={Elsevier BV},
    doi={10.1016/j.cmpb.2023.107550},
    issn={0169-2607},
}

Antonio Luca Alfeo, Antonio G. Zippo, Vincenzo Catrambone, Mario G.C.A. Cimino, Nicola Toschi, Gaetano Valenza. "From
local counterfactuals to global feature importance: efficient, robust, and model-agnostic explanations for brain
connectivity networks" Computer Methods and Programs in Biomedicine 236 (2023): 107550.



From local counterfactuals to global feature importance: efficient,
robust, and model-agnostic explanations for brain connectivity
networks
Antonio Luca Alfeoa,b,∗, Antonio G. Zippoc, Vincenzo Catrambonea,b, Mario G.C.A. Ciminoa,b,
Nicola Toschid and Gaetano Valenzaa,b

aDepartment of Information Engineering, University of Pisa, Largo Lucio Lazzarino, 1, Pisa, 56126, Italy
bBioengineering & Robotics Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino, 1, Pisa, 56126, Italy
cInstitute of Neuroscience, Consiglio Nazionale delle Ricerche, Via Raoul Follereau, 3, Vedano al Lambro (MB), 20854, Italy
dDepartment of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, Roma, 00133, Italy

A R T I C L E I N F O
Keywords:
eXplainable Artificial Intelligence
fMRI
Affective Computing
Feature Importance
Counterfactual explanation

A B S T R A C T
Background: Explainable artificial intelligence (XAI) is a technology that can enhance trust in mental
state classifications by providing explanations for the reasoning behind artificial intelligence (AI) mod-
els outputs, especially for high-dimensional and highly-correlated brain signals. Feature importance
and counterfactual explanations are two common approaches to generate these explanations, but both
have drawbacks. While feature importance methods, such as shapley additive explanations (SHAP),
can be computationally expensive and sensitive to feature correlation, counterfactual explanations
only explain a single outcome instead of the entire model.

Methods: To overcome these limitations, we propose a new procedure for computing global feature
importance that involves aggregating local counterfactual explanations. This approach is specifically
tailored to fMRI signals and is based on the hypothesis that instances close to the decision boundary
and their counterfactuals mainly differ in the features identified as most important for the downstream
classification task. We refer to this proposed feature importance measure as Boundary Crossing Solo
Ratio (BoCSoR), since it quantifies the frequency with which a change in each feature in isolation
leads to a change in classification outcome, i.e., the crossing of the model’s decision boundary.

Results and Conclusions: Experimental results on synthetic data and real publicly available fMRI
data from the Human Connect project show that the proposed BoCSoR measure is more robust to
feature correlation and less computationally expensive than state-of-the-art methods. Additionally, it
is equally effective in providing an explanation for the behavior of any AI model for brain signals.
These properties are crucial for medical decision support systems, where many different features are
often extracted from the same physiological measures and a gold standard is absent. Consequently,
computing feature importance may become computationally expensive, and there may be a high
probability of mutual correlation among features, leading to unreliable results from state-of-the-art
XAI methods.

1. Introduction
Recent advances in machine learning (ML), and in par-

ticular in artificial intelligence (AI), have shown great poten-
tial for a variety of applications in the biomedical field, in-
cluding protein folding, protein design, molecular medicine
[1], as well as in the analysis and classification of physi-
ological data, including brain signals [2; 3]. However, AI
models are often criticized for their black box nature, which
means that their inner workings are not transparent and are
difficult to interpret. The increasing complexity of these
models has led to a need for explainable artificial intelligence
(XAI) algorithms that can provide insight into the reasoning
behind the output of these models [4; 5; 6]. In the context
of physiological data analysis and classification, especially
considering brain signals, XAI can be particularly valuable.
Brain signals are highly complex and often highly correlated,
which makes it challenging to extract meaningful features
and understand the underlying physiological processes that
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contribute to specific patterns. XAI can provide valuable
insights into the mechanisms underlying these patterns and
help researchers and clinicians better understand and inter-
pret the results of physiological data analysis and classifica-
tion [1].

XAI has recently gained significant attention as a poten-
tial tool for advancing neuroscience research [7; 8; 9]. XAI
approaches have been employed to compare multi-modal
brain data, behavioral and computational data, as well as
stimulus descriptions [10]. More recently, XAI techniques
have been successfully applied to longitudinally monitor
subjects affected by mild cognitive impairment [11], to
study factors contributing to stroke prediction [12], to high-
light key features in epilepsy detection systems [13], and
to shed light on brain dynamics associated with the aging
process [14]. These studies showcase the versatility of XAI
techniques in investigating brain signals and highlight the
potential of XAI in facilitating the development of effective
and accurate diagnostic and therapeutic tools.
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1.1. Explainable Artificial Intelligence
In recent years, there has been a growing interest in the

development of XAI algorithms, which aim to provide clear
and interpretable explanations of the reasoning behind AI
models’ predictions. XAI can help improve the transparency
and trustworthiness of AI models and make them more
accessible to non-experts. To illustrate, XAI technology can
help medical personnel better justify medical treatment for
patients, as well as take advantage of what the AI system has
learned from the data to gain new scientific insights [15].

XAI approaches attach the so-called explanations for
the reasoning of the AI algorithm to the provided predic-
tions, allowing domain experts (e.g., biomedical scientists)
to validate and trust the algorithms in a much smoother
manner [16]. This view is supported by recent regulations on
personal data processing (i.e., the General Data Protection
Regulation [17]), which include some level of explainability
as a requirement to be met in order to employ AI in real-
world clinical decision-making processes [18].

The explanations generated by XAI approaches can be
characterized by different properties. First, the explanations
can be local or global. Local explanations motivate the
classification outcome of a given instance, while global ex-
planations provide insight into the whole model. Moreover,
the explanations can come in different forms and shapes[19]:
(i) rule-based explanations approximate the decision process
embedded in the algorithm by associating labels to the
thresholds of the input features [20]; (ii) instance-based
explanations associate a labeled instance to some prototypes
or counterexamples to trigger similarity-based reasoning in
the end-user (e.g., the domain expert) [21]; (iii) input-based
explanations explain the behavior of an AI model by grading
the contribution of each input feature to the prediction [22].
Choosing the best explanation strategy is a design choice that
depends on how comprehensibility and faithfulness are val-
ued within a given application. Typically, comprehensible
(i.e., compact, unambiguous) explanations are not faithful
(i.e., comprehensively describing the AI model), and vice
versa [23].

In a medical decision process, the end-users are not AI
experts, thus the explanation needs to be as comprehensible
as possible. To this aim, the explanation form that can be
employed are the input-based (e.g., feature importance) and
instance-based (e.g., counterfactual) [23].

Feature importance is one of the most widely used
explanation forms, possibly due to the availability of model-
agnostic approaches that can generate a feature ranking
[22]. For example, the Shapley additive explanations (SHAP,
[24]) framework is considered a gold standard among XAI
approaches due to its solid theoretical background and
wide applicability [25]. SHAP feature importance [26], es-
timates how important a feature is by measuring the average
marginal contribution of a feature across all the possible
combinations of features. This measure is computed for
every data instance and then aggregated to provide a single
ranking. Recently, the extensive use of SHAP has exposed
its limitations, such as computational complexity, which

grows exponentially with the number of features [27], and its
sensitivity to correlation among features [28]. Unfortunately,
both these conditions often occur in biomedical data [29].
Finally, SHAP does not provide insight into the behavior of
the model with unseen instances [27]. Exemplarily, authors
in [30] employed SHAP feature importance approaches
to drive an algorithm for generating counterfactuals by
modifying the value of the most important features.

To address this issue, counterfactual explanations can be
employed. Intuitively, given a data instance 𝑖 and its pre-
dicted class 𝐶𝑖, a counterfactual is an instance 𝑐 ’similar’ to
𝑖 that has been allocated to a different predicted class (𝐶𝑐! =
𝐶𝑖). A counterfactual explanation is based on finding that
’similar’ instance, meaning examining the minimum change
that will result in a change in the predicted class. Unfortu-
nately, the definition of ’minimum change’ is not univocal.
In some cases, it is considered the minimum number of
features to change, in others, the minimum distance between
the original instance and the counterfactual instances [31]. A
counterfactual explanation can be found by (i) using a "brute
force procedure", i.e. specifying the step size and the ranges
of values for each feature to be explored around the instance
being explained [32]; (ii) employing a specific loss measure
and solving an optimization problem [33]; or (iii) adopting
a heuristic search strategy, e.g., searching within a reference
population of instances to be used as counterfactuals [34].
According to the results in [31], the latter strategies have
the smallest computational cost (i.e., one or two orders
of magnitude) as compared to the previous ones, and are
often based on K-Nearest Neighbour procedures [34]. The
main limitation of counterfactual explanations is the fact
that they are instance-specific, i.e. no general information
about the model reasoning as a whole is extracted [31; 35].
The authors in [36] propose a causality-based XAI approach
based on probabilistic contrasting counterfactuals to gen-
erate global, local, and contextual explanations. However,
the model requires structured knowledge, such as a causal
graph, and does not provide an actual feature importance
measure. The authors in [37] use a variational autoencoder
approach to generate local explanations for an AI approach
by approximating the decision boundary in the neighbor-
hood of an instance to be explained. Anchor [38] produces
local decision rules that are consistent with the decision
boundary. Similarly, local surrogates [39] focuse on the
decision boundary by generating instances in a hypersphere
around the point to be explained, which is not feasible for
large datasets.
1.2. In this work

In this paper, we propose a new XAI method, especially
suitable for the analysis of brain signals. We employ the term
XAI method to describe any process that can offer insights
into how an ML model processes data instances to yield clas-
sifications. In our proposed approach, the generated insights
pertain to the importance of each feature for the ML model.
The most widely used method for determining the feature
importance is SHAP. However, the literature reveals that
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Figure 1: Example of the procedure for finding the minimally-
different counterfactual for instance s, belonging to class A.
The three nearest neighbors of s from the counterfactual class
(i.e., class B) are considered. For each of them, two equally
distant midpoints are generated. Among all the midpoints
corresponding to a classification outcome equal to B, the
closest is considered as the minimally-different counterfactual.

SHAP can be computationally demanding, and its reliability
may be affected by feature correlation [28]. Our innovative
approach to measuring feature importance for ML models
that process tabular data relies on local counterfactuals,
addressing these limitations. To assess the effectiveness of
our proposed approach, we conducted experiments using the
publicly available fMRI dataset Human Connectome Project
(HCP) [40]. Our results demonstrate that our approach pro-
vides interpretable explanations for the model’s decisions.
In contrast to previous counterfactual XAI approaches, such
as those proposed by Vlassopoulos et al. [37], Laugel et
al. [39], and Ribeiro et al. [38], our proposed approach
provides global explanations, addressing a major limitation
of these methods. Furthermore, our results on both synthetic
and publicly available real-world datasets demonstrate that
our proposed feature importance measure is more robust to
feature correlation and less computationally expensive than
SHAP, while remaining capable of providing a thorough
explanation of the behavior of any AI model for tabular data.

The paper is structured as follows. Section 2 presents the
proposed XAI approach. Section 3 details the experimental
dataset, while section 4 explains the experimental setup and
the obtained results. Finally, section 5 and 6 discuss the
results and outline the conclusions, respectively.

2. The Proposed Boundary Crossing Solo
Ratio (BoCSoR) XAI algorithm
To the best of our knowledge, the proposed approach

(i.e., BoCSoR) is among the few methods that integrate
feature importance and counterfactual explanations. BoC-
SoR is based on two key assumptions: (i) feature impor-
tance indicates the most critical features for identifying a
class, i.e., distinguishing it from other classes, and (ii) the
counterfactuals of an instance are the most similar instances
assigned to a different class, which lie beyond the decision
boundary. Our hypothesis is that by considering instances
near the decision boundary [37], the boundary is more likely
to be crossed when the most important features are modified
[41]. More formally, given the original class 𝑂 and the
counterfactual class 𝐶 , we define 𝐵 as the set of boundary

instances 𝑏, as the instances of class 𝑂 with a distance to
their nearest neighbour of class 𝐶 (i.e. 𝑐𝑛𝑛𝑏 ) smaller than a
certain percentile (𝑡ℎ) of the distances obtained with all the
instances 𝑜 of class 𝑂 (Eq. 1).

𝐷 ={𝑑𝑖𝑠𝑡(𝑜, 𝑐𝑛𝑛𝑜 ) ∀𝑜 ∈ 𝑂}

𝐵 ={𝑏 ∈ 𝑂, 𝑑𝑖𝑠𝑡(𝑏, 𝑐𝑛𝑛𝑏 ) < 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑡ℎ,𝐷)}
(1)

Given a boundary instance 𝑏 ∈ 𝐵, the corresponding
minimally-different counterfactual 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐶𝐹𝑏 is a instance
recognized as class 𝐶 characterized by minimal distance
from 𝑏 (Eq. 2). More on the concept of minimality employed
in our approach in Algorithm 1.

𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐶𝐹𝑏 ∈ 𝐶, 𝑑𝑖𝑠𝑡(𝑏, 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐶𝐹𝑏) 𝑖𝑠 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 (2)
The feature 𝑓 𝑏

𝑖 at index 𝑖 is 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 if by substituting
its value in 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐶𝐹𝑏 with its value in 𝑏, 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐶𝐹𝑏 is
classified as class 𝑂. The importance of the feature at index
𝑖 is the occurrence with which 𝑓𝑖 is 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 considering all
the boundary instances (Eq. 3).

𝐵𝑜𝐶𝑆𝑜𝑅𝑓𝑖 = |{𝑓 𝑏
𝑖 𝑖𝑠 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 ∀𝑏 ∈ 𝐵}| (3)

In the following, we present the implementation of the
proposed approach via pseudo-code. For all the procedures
detailed in this Section, the Euclidean distance is considered
as the reference distance measure (Eq. 4). In Eq. 4, 𝑎 and
𝑏 are two exemplary instances consisting of 𝑁 features,
whereas 𝑓 𝑎

𝑖 and 𝑓 𝑏
𝑖 are the values of the 𝑖𝑡ℎ feature for 𝑎 and

𝑏, respectively.

𝑑𝑖𝑠𝑡(𝑎, 𝑏) =

√

√

√

√

𝑁
∑

𝑖=1
(𝑓 𝑎

𝑖 − 𝑓 𝑏
𝑖 )2 (4)

According to [31], efficient approaches for counterfac-
tual search can be based on K-Nearest Neighbor (NN) pro-
cedures. In essence, for the instance to be explained, the
closest instances belonging to a different class can be utilized
as potential counterfactuals. In Algorithm 1, the NN search
is conducted using the method KNNfromClass (line 2) in
which 𝑠 denotes the instance, and 𝑘 represents the number
of closest instances of class 𝑐 to be found. However, the
nearest instance of another class may not correspond to the
minimal change needed to achieve a different classification.
To address this issue, midpoints are generated between each
potential counterfactual and the original instance. In Algo-
rithm 1 this is accomplished via the method intermediate-
PointsBetween (line 4) which provides a number of evenly
spaced instances between 𝑠 and 𝑐 equal to 𝑠𝑡𝑒𝑝𝑠. We collect
each midpoint identified as an instance of the counterfactual
class (lines 6-8 of Algorithm 1). This process is repeated for
every potential counterfactual (see Fig. 1). We then calculate
the distance between the collected midpoints and the original
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instance, and the closest one is selected as the counterfactual
that minimally differs from 𝑠 (lines 11-13 of Algorithm 1).
In our approach, we employ the concept of ’minimality’ in
a relative sense, referring to the step-wise exploration of the
space between two instances belonging to different classes.
This is rather than in an absolute sense, which would indicate
the minimum distance necessary to alter the classification
outcome. While our approach sacrifices the guarantee of
achieving an absolute minimum distance, it substantially
reduces computational costs, making it a more practical and
favourable choice.
Algorithm 1 Pseudocode of the proposed procedure to effi-
ciently obtain the closest counterfactual for a given instance
(i.e., 𝑓𝑖𝑛𝑑𝐶𝐹 ).
Requires:
𝑀 ⇐ trained machine learning model
𝑠 ⇐ instance of which a counterfactual needs to be found
𝑐𝑙𝑎𝑠𝑠𝑠 ⇐ class of 𝑠
𝑐𝑙𝑎𝑠𝑠𝑐 ⇐ counterfactual class
𝑘 ⇐ # closest neighbours of 𝑠 from 𝑐𝑙𝑎𝑠𝑠𝑐
𝑠𝑡𝑒𝑝𝑠 ⇐ # intermediate steps between 𝑠 and its neighbours
Procedure:

1: 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ⇐ 𝑒𝑚𝑝𝑡𝑦𝐿𝑖𝑠𝑡()
2: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑡𝑢𝑎𝑙𝑠 ⇐ 𝐾𝑁𝑁𝑓𝑟𝑜𝑚𝐶𝑙𝑎𝑠𝑠(𝑠, 𝑘, 𝑐𝑙𝑎𝑠𝑠𝑐)
3: for each 𝑐 ∈ 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑡𝑢𝑎𝑙𝑠 do
4: 𝑝𝑜𝑖𝑛𝑡𝑠 ⇐ 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑃 𝑜𝑖𝑛𝑡𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛(𝑠, 𝑐, 𝑠𝑡𝑒𝑝𝑠)
5: for each 𝑝 ∈ 𝑝𝑜𝑖𝑛𝑡𝑠 do
6: if 𝑀.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑝) == 𝑐𝑙𝑎𝑠𝑠𝑐 then
7: 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝑝)
8: end if
9: end for

10: end for
11: 𝑒𝑥𝑝𝑙𝐷𝑖𝑠𝑡 ⇐ 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠, 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛𝑠)
12: 𝑚𝑖𝑛𝐷𝑖𝑠𝑡 ⇐ 𝑚𝑖𝑛(𝑒𝑥𝑝𝑙𝐷𝑖𝑠𝑡)
13: 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐶𝐹 ⇐ 𝑠𝑒𝑙𝑒𝑐𝑡(𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛𝑠, 𝑒𝑥𝑝𝑙𝐷𝑖𝑠𝑡 ==

𝑚𝑖𝑛𝐷𝑖𝑠𝑡)
14: return 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐶𝐹

After identifying the minimally different counterfactual
using Algorithm 1, the subsequent step involves determining
the features that can potentially cross the decision boundary
when modified in isolation. To accomplish this, the value of
each feature of the counterfactual instance is replaced with
the corresponding value from the original instance, thereby
generating a new instance. Initially, the index and value
of each feature for the closest counterfactual are collected
(line 3 of Algorithm 2). Then, a new instance is created by
replacing the value of the feature at index 𝑖 for the closest
counterfactual instance with the value of the same feature
in the original instance (line 5 of Algorithm 2). If this new
instance yields a different classification outcome compared
to the counterfactual instance, that feature is deemed relevant
(lines 6-8 of Algorithm 2). Finally, the procedure outlined in
Algorithm 2 gathers all relevant features for a given instance.

Our proposed feature importance measure, dubbed Bound-
ary Crossing Solo Ratio (BoCSoR), is determined by the

Algorithm 2 Pseudocode of the procedure to obtain the
relevant feature for a single instance to cross the decision
boundary (i.e., 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐹 𝑒𝑎𝑡𝑢𝑟𝑒𝑠).
Requires:
𝑀 ⇐ trained machine learning model
𝑠 ⇐ instance of which a counterfactual needs to be found
𝑐𝑙𝑎𝑠𝑠𝑠 ⇐ class of 𝑠
𝑐𝑙𝑎𝑠𝑠𝑐 ⇐ counterfactual class
𝑘 ⇐ # closest neighbours of 𝑠 from 𝑐𝑙𝑎𝑠𝑠𝑐
𝑠𝑡𝑒𝑝𝑠 ⇐ # intermediate steps between 𝑠 and its neighbours
Procedure:

1: 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐹 𝑒𝑎𝑢𝑟𝑒𝑠 ⇐ 𝑒𝑚𝑝𝑡𝑦𝐿𝑖𝑠𝑡()
2: 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐶𝐹 ⇐ 𝑓𝑖𝑛𝑑𝐶𝐹 (𝑀, 𝑠, 𝑘, 𝑠𝑡𝑒𝑝𝑠, 𝑐𝑙𝑎𝑠𝑠𝑠, 𝑐𝑙𝑎𝑠𝑠𝑐)
3: [𝑖𝑛𝑑𝑒𝑥, 𝑣𝑎𝑙𝑢𝑒] ⇐ 𝑣𝑎𝑙𝑢𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝐵𝑦𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑠, 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝐶𝐹 )
4: for each 𝑖 ∈ 𝑖𝑛𝑑𝑒𝑥 do
5: 𝐶𝐹𝑖 ⇐ 𝑐ℎ𝑎𝑛𝑔𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑖𝑛𝑑𝑒𝑥𝑖, 𝑣𝑎𝑙𝑢𝑒𝑖)
6: if 𝑀.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝐶𝐹𝑖) == 𝑐𝑙𝑎𝑠𝑠𝑠 then
7: 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐹 𝑒𝑎𝑡𝑢𝑟𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝑖𝑛𝑑𝑒𝑥𝑖)
8: end if
9: end for

10: return 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐹 𝑒𝑎𝑡𝑢𝑟𝑒𝑠

frequency at which each feature is considered relevant by
the procedure outlined in Algorithm 2 when applied to
instances close to the decision boundary. Closeness here,
is defined as the inter-class distance, i.e. the Euclidean
distance (Eq. 4) between the instance and its nearest instance
from another class. We select instances with an inter-class
distance smaller than a given percentile among all inter-
class distances for the boundary instances. To find these,
we first compute the pairwise (Euclidean) distance between
all features of the original and counterfactual classes (lines
2-4 of Algorithm 3), and then select only the instances with
a distance smaller than the given percentile (lines 5-6 of
Algorithm 3). Finally, the relevant features (Algorithm 2)
for each boundary instance are aggregated (lines 7-11 of
Algorithm 3). BoCSoR measures the frequency at which
a single change of each feature (i.e., with other features
unchanged) results in crossing the decision boundary. To
determine this measure, we replace the value of a feature
at a given index for each boundary instance with the value
of the same feature in the original instance (line 5 of
Algorithm 2). We then compare the resulting instance with
the corresponding counterfactual instance and consider the
feature relevant if the classification outcome is different
(lines 6-8 of Algorithm 2). In summary, BoCSoR considers
the frequency at which each feature can result in crossing the
decision boundary for instances close to it (Algorithm 3).

We present the time complexity analysis of the afore-
mentioned procedures considering the number of instances
𝑁 , the number of features 𝑓 , and the main parameters of
the procedures, i.e. 𝑘, 𝑠𝑡𝑒𝑝𝑠, and 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒𝑇 ℎ. To reduce
the required number of distance computations and ensure a
quick NN search, a variety of tree-based data structures have
been proposed. Among those, we employ the so-called ball
tree. According to the official scikit-learn documentation,
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Algorithm 3 Pseudocode of the procedure to obtain the
BoCSoR measure for a given decision boundary (i.e.,
𝐵𝑜𝐶𝑆𝑜𝑅).
Requires:
𝑀 ⇐ trained machine learning model
𝑆 ⇐ set of all the data instances
𝑐𝑙𝑎𝑠𝑠𝑜 ⇐ original class
𝑐𝑙𝑎𝑠𝑠𝑐 ⇐ counterfactual class
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒𝑇 ℎ ⇐ threshold of the data
𝑘 ⇐ # closest neighbours of 𝑠 from 𝑐𝑙𝑎𝑠𝑠𝑐
𝑠𝑡𝑒𝑝𝑠 ⇐ # intermediate steps between 𝑠 and its neighbours
Procedure:

1: 𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠 ⇐ 𝑒𝑚𝑝𝑡𝑦𝐿𝑖𝑠𝑡()
2: 𝑠𝑒𝑡𝑂 ⇐ 𝑠𝑒𝑙𝑒𝑐𝑡(𝑑𝑎𝑡𝑎, 𝑙𝑎𝑏𝑒𝑙 == 𝑐𝑙𝑎𝑠𝑠𝑜)
3: 𝑠𝑒𝑡𝐶 ⇐ 𝑠𝑒𝑙𝑒𝑐𝑡(𝑑𝑎𝑡𝑎, 𝑙𝑎𝑏𝑒𝑙 == 𝑐𝑙𝑎𝑠𝑠𝑐)
4: 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒𝐷𝑖𝑠𝑡 ⇐ 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠𝑒𝑡𝑂, 𝑠𝑒𝑡𝐶 )
5: 𝑡ℎ ⇐ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒𝐷𝑖𝑠𝑡, 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒𝑇 ℎ)
6: 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑇 𝑜𝐸𝑥𝑝𝑙𝑎𝑖𝑛 ⇐ 𝑠𝑒𝑙𝑒𝑐𝑡(𝑠𝑒𝑡𝐶 , 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒𝐷𝑖𝑠𝑡 <

𝑡ℎ)
7: for each 𝑠 ∈ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑇 𝑜𝐸𝑥𝑝𝑙𝑎𝑖𝑛 do
8: 𝑅𝐹 ⇐ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐹 𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑀, 𝑠, 𝑘, 𝑠𝑡𝑒𝑝𝑠, 𝑐𝑙𝑎𝑠𝑠𝑜, 𝑐𝑙𝑎𝑠𝑠𝑐)
9: 𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝑅𝐹 )

10: end for
11: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 ⇐

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐵𝑦𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠)
12: return 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒

the query time with a ball tree grows as approximately
𝑂(𝑓 ⋅ 𝑙𝑜𝑔(𝑁)), where 𝑓 is the number of features and 𝑁
is the number of instances. In Algorithm 1, the NN search
query is computed 𝑘 times, generating 𝑘 potential counter-
factuals (𝑂(𝑘 ⋅ 𝑓 ⋅ 𝑙𝑜𝑔(𝑁)). For each one of the 𝑘 potential
counterfactuals, a number of 𝑠𝑡𝑒𝑝𝑠 midpoints are generated.
Each one of those is used to produce a classification via the
ML model. It results in a total amount of 𝑘 ⋅𝑠𝑡𝑒𝑝𝑠 operations
with a constant complexity (𝑂(𝑘 ⋅ 𝑠𝑡𝑒𝑝𝑠)). It follows the
computation of the distances between the instance 𝑠 and the
midpoints (𝑂(𝑘 ⋅ 𝑠𝑡𝑒𝑝𝑠)) and the search for the minimum
(worst case, 𝑂(𝑘 ⋅ 𝑠𝑡𝑒𝑝𝑠)). Overall, Algorithm 1 results in
a complexity equal to 𝑂(𝑘 ⋅ 𝑓 ⋅ 𝑙𝑜𝑔(𝑁) + 3 ⋅ 𝑘 ⋅ 𝑠𝑡𝑒𝑝𝑠), that
can be simplified to 𝑂(𝑘 ⋅ 𝑓 ⋅ 𝑙𝑜𝑔(𝑁) + 𝑘 ⋅ 𝑠𝑡𝑒𝑝𝑠).

Algorithm 2 exploits Algorithm 1 to find the minimally-
different counterfactual. Then, it switches the values of each
feature and employs the obtained instance to compute a
classification via the ML model. These constant complexity
operations are repeated for each feature (𝑂(𝑓 )). Overall,
Algorithm 2 results in a complexity equal to𝑂(𝑘⋅𝑓 ⋅𝑙𝑜𝑔(𝑁)+
𝑘 ⋅ 𝑠𝑡𝑒𝑝𝑠 + 𝑓 ).

Algorithm 3 exploits Algorithm 2 for each boundary
instance of class 𝑠, that is 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒𝑇 ℎ percentage of all the
instances of the class. Assuming a balanced classification
problem, in which each class has 𝑁 instances, both the
pairwise distance computation and the selection operation
result in 𝑂(𝑁2) complexity each. Those are followed by the
executions of Algorithm 2. Thus, Algorithm 3 results in a

final complexity equal to 𝑂(2 ⋅𝑁2 +𝑁 ⋅percentileTh(𝑘 ⋅ 𝑓 ⋅
𝑙𝑜𝑔(𝑁 ⋅ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒𝑇 ℎ) + 𝑘 ⋅ 𝑠𝑡𝑒𝑝𝑠 + 𝑓 )).

Since the value of 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒𝑇 ℎ is bounded, we can
simplify the time complexity of Algorithm 3 as 𝑂(𝑁2 +
𝑁 ⋅ (𝑘 ⋅ 𝑓 ⋅ 𝑙𝑜𝑔(𝑁) + 𝑘 ⋅ 𝑠𝑡𝑒𝑝𝑠 + 𝑓 )). If we also consider
as bounded the parameterizations 𝑘 and 𝑠𝑡𝑒𝑝𝑠 (e.g. equal to
10), we can again simplify the time complexity, firstly as
𝑂(𝑁2 +𝑁(𝑓 ⋅ 𝑙𝑜𝑔(𝑁) + 𝑓 )) and then as per Eq. 5.

𝑡𝑖𝑚𝑒𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝐵𝑜𝐶𝑆𝑜𝑅 = 𝑂(𝑁2 +𝑁 ⋅𝑓 ⋅ 𝑙𝑜𝑔(𝑁)) (5)
Compared to SHAP, which has a time complexity that

increases linearly with the number of instances and expo-
nentially with the number of features [24], our proposed
approach results in significantly smaller time complexity.

3. Experimental Data and Setup
3.1. Synthetic Datasets

In order to evaluate the reliability of feature importance
measures, we constructed a tabular dataset (Dataset1) with
known feature importance, following the methodology de-
scribed in [42]. We used the 𝑚𝑎𝑘𝑒_𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 method
from the Python library scikit-learn [43] to generate nor-
mally distributed clusters of points around the vertices of
a hypercube defined by five features. These features were
interdependent, and the dataset was contaminated with noise
to create a set of informative features followed by redundant
features, i.e., linear combinations of informative ones. The
amount of Gaussian noise added to each redundant feature
increased linearly, resulting in a data set with high feature
importance for informative features and predicted linearly
decreasing importance along redundant features. The data
generation procedure allowed us to vary the number of
features, the number of informative features, and the number
of instances. Further details on the data generation procedure
can be found in [44].

By applying different feature importance approaches to
this dataset, we could examine the extent to which the
computed importance measures aligned with the imposed
importance. We could also evaluate the impact of feature
correlation on the reliability of feature importance compu-
tation.

To further explore the impact of feature correlation on
feature importance measures, we created another synthetic
dataset (Dataset2). This dataset was generated using the
same procedure as Dataset1 but with the two most important
and the two least important features duplicated to replace the
other four features, thereby introducing high correlation be-
tween the least and most important features. This allowed us
to assess the effect of the correlation between features with
different importance levels on the computation of feature
importance measures.

The ground truth feature importance for Dataset1 and
Dataset2 does not consist of numerical values, which renders
it unsuitable for measuring feature importance assessment
error. Nonetheless, the method used to generate the synthetic
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dataset provides a relative measure of feature importance,
comparable to other studies that generate data with known
feature importance [45]. Specifically, the synthetic dataset
reveals which features are replicated (and thus most corre-
lated) or informative (and thus most important) and which
features become less important due to the progressive addi-
tion of noise. However, it is impossible to measure how the
addition of noise may decrease feature importance in abso-
lute terms. Despite this limitation, if two XAI approaches
provide different importance measures for the same feature,
it is feasible to investigate which measure is closest to the
known informativeness level of the features, examine the
conditions behind this difference, and verify if it consistently
occurs with features of varying levels of informativeness.
For instance, we anticipated that the average importance
measure for the top informative features should surpass
the average importance measure for the least informative
features. Therefore, in our experimentation, we focused on
groups of features characterized by opposite levels of im-
portance and/or maximum correlation with other features in
the dataset. Our quantitative results were aimed at exploring
the relationship between the known relative feature impor-
tance and the importance measures provided by SHAP and
BoCSoR.
3.2. Real Datasets: fMRI data from HCP

The Human Connectome Project (HCP) is a consortium
of the National Institutes of Health of the United States
that recruited participants for large-scale studies on human
brain’s anatomical and functional connectivity. The HCP
consortium collected both resting state and task-evoked
activities mostly from healthy subjects. So far, the largest
study published is the Young Adults 𝐻𝐶𝑃 − 1200 which
includes about 1200 healthy participants (aged 22 − 35
y) who performed several tasks over 2 fMRI trials. In
the present study, to test the usability and performance
of the proposed method, the analysis was performed on
Social and Emotional processing task data. For all subjects,
all fMRI volumes were registered to a common reference
space (𝐵𝑟𝑎𝑖𝑛𝑛𝑒𝑡𝑡𝑜𝑚𝑒, ℎ𝑡𝑡𝑝 ∶ ∕∕𝑤𝑤𝑤.𝑏𝑟𝑎𝑖𝑛𝑛𝑒𝑡𝑜𝑚𝑒.𝑜𝑟𝑔∕)
parcelled into 123 cortical and subcortical regions per each
hemisphere (246 in total, for ROI details, see [46]). More
specifically, the considered recognition tasks are:

• Emotion Processing task [47]: participants watch ei-
ther a fearful human face (12 different, 6 per gender, 2
trials) or a simple meaningless shape on a display for
18 seconds (3 seconds per trial) with no inter-stimulus
intervals. The exact timing of stimuli presentation ran-
domly changes from subject to subject with a standard
deviation of about 0.13 seconds across 1200 subjects
in order to avoid habituation.

• Social task [48]: 12 silent animated shapes (i.e., big
red and small blue triangles) were shown on a screen
during MRI acquisition and they are designed to
mimic social interactions. Two kinds of animations
are considered: ToM (3 for each trial) with animations

eliciting mental state attributions, and RA (2 for each
trial) comprehending animations of randomly moving
shapes. Each animation lasts 23 seconds.

All subject-wise regions of interest (ROI) time-series
were averaged within each ROI and preprocessed into subject-
wise, ROI-to-ROI adjacency matrices, which has been proven
to be successful in previous studies [49; 50; 51; 52; 53;
54], calculated as Pearson’s correlation coefficient for each
possible pair of the 246 ROIs. This approach generates a
database with 30135 columns and more than a thousand rows
((246 ∗ 245)∕2)., which constituted our final dataset to be
used for classification.

The groups considered are listed as follows: Superior
Frontal Gyrus (SFG), Middle Frontal Gyrus (MFG), Inferior
Frontal Gyrus (IFG), Orbital Gyrus (OrG), Precentral Gyrus
(PrG), Paracentral Lobule (PCL), Superior Temporal Gyrus
(STG), Middle Temporal Gyrus (MTG), Inferior Tempo-
ral Gyrus (ITG), Fusiform Gyrus (FuG), Parahippocampal
Gyrus (PhG), posterior Superior Temporal Sulcus (pSTS),
Superior Parietal Lobule (SPL), Inferior Parietal Lobule
(IPL), Precuneus (Pcun), Postcentral Gyrus (PoG), Insular
Gyrus (INS), Cingulate Gyrus (CG), MedioVentral Occip-
ital Cortex (MVOcC), Lateral Occipital Cortex (LOcC),
Amygdala (Amyg), Hippocampus (Hipp), Basal Ganglia
(BG), Thalamus (Tha).

4. Experimental Results
The proposed approach, BoCSoR, aims to provide a

measure of feature importance. While SHAP feature impor-
tance estimates are widely regarded as the gold standard in
XAI literature, we investigated whether BoCSoR can offer
improved computational efficiency and increased robustness
to feature correlations - two of the main issues with SHAP
[28]. To do this, we employed SHAP as a baseline method
and evaluated the level of agreement between SHAP and
BoCSoR. Additionally, we tested whether any disagreement
between the two methods was more likely to occur with
features that had high correlations with other features. As
a model-agnostic approach, BoCSoR can be applied to any
approach that processes tabular data. Our focus in this study
was to explain the classification model rather than to achieve
the best classification accuracy. Therefore, we employed
shallow classifiers provided by scikit-learn [43] for all our
experiments. Specifically, we used:

• Catboost [55], a ML approach that employs a gradient
boosting approach to build an ensemble of decision
trees;

• Multi-layer Perceptron (MLP) [56], a ML approach
based on fully connected neural networks;

• Gaussian Process Classifier (GPC) [57], a kernel-
based ML approach (like Support Vector Machine),
aimed at predicting highly calibrated class member-
ship probabilities;
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Table 1
Wall-clock time [s] to compute the feature importance mea-
sure. Average ± standard deviation.

Data SHAP BoCSoR
Dataset1 41.72 ± 4.95 1.28 ± 0.09
Dataset2 39.08 ± 2.31 1.23 ± 0.15
HCP - Emotion 2604.2 ± 148.36 185.1 ± 24.654
HCP - Social 2618.3 ± 150.89 169.58 ± 13.16

It is important to note that our study was not focused
on achieving the best possible classification performance.
Therefore, we used the default hyperparameters provided by
scikit-learn [43] for each of these approaches.

To ensure reliable results, all experimental evaluations
were conducted via a 10-fold Monte Carlo cross-validation
scheme.

We also compared the wall-clock time of BoCSoR and
SHAP. To generate a fair comparison, we used the same
number of instances considered by BoCSoR, i.e., the in-
stances close to the decision boundary. To this end, we em-
ployed a 𝐾𝑒𝑟𝑛𝑒𝑙𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟 in SHAP and employed different
subsampling strategies. We conducted all computations on a
hardware platform with a CPU Intel Core 𝑖7−6700 at 2.60−
3.50𝐺𝐻𝑧, 6𝑀 cache, and 16𝐺𝐵 DDR3L 1600𝑀𝐻𝑧RAM.
The wall-clock time for each method is reported in Table
1. This comparison provides evidence of the superiority of
BoCSoR in terms of the wall-clock time (lower is better).
4.1. Synthetic Datasets

We computed the feature importance for Dataset1 using
both SHAP and BoCSoR with the three ML approaches
listed at the beginning of Section 4 (Fig. 2). The solid line
represents the average feature importance measure provided
by BoCSoR, while the dotted line represents the average
feature importance measure provided by SHAP. The back-
ground color signifies the ideal trend of feature importance
according to the ground truth, with the first five features con-
sidered important (green background) and the subsequent
features becoming less important due to the addition of noise
(transitioning from light green to red). The resulting average
feature importance measures display a consistent overall
descending trend across different measures (BoCSoR and
SHAP) and ML approaches.

To assess the agreement between SHAP and BoCSoR,
we computed Pearson’s correlation coefficient between their
feature importance values, as illustrated in Figure 3. To
ensure a fair comparison, we rescaled the importance values
between 0 and 1 using a min-max normalization. All cor-
relation coefficients obtained were significant (𝑝 < 0.05),
indicating a positive and significant correlation between
BoCSoR and SHAP. This result was consistent across all
three ML approaches used in our study.

However, while there is a high correlation between BoC-
SoR and SHAP importance values, discrepancies can occur
in some cases. To investigate the impact of feature cor-
relation on these differences, we calculated the maximum
correlation (𝑀𝐶) between one feature and any other feature

Figure 2: Experimental results with Dataset1 and three ML
approaches. Feature importance computed via BoCSoR and
SHAP with 10 repetitions and averaged by feature. The color of
the background indicates the trend of the ground truth feature
importance (from green to red, from high to low).

Figure 3: Correlation between feature importance computed
via BoCSoR and SHAP with Dataset1 and three ML ap-
proaches.

in the dataset. Subsequently, we computed the 𝑀𝐶 for the
five most similar and the five most dissimilar features in
terms of importance for both BoCSoR and SHAP, and we
rescaled the resulting values using a min-max procedure.
The violin plots of the 𝑀𝐶 values obtained for each ML
approach are presented in Figure 4. Our results demonstrate
that the group of features where SHAP and BoCSoR differ
the most is characterized by a higher 𝑀𝐶 , indicating a
stronger correlation with other features in the dataset. This
finding is consistent across all three ML approaches em-
ployed in our study.

For Dataset2, we computed the feature importance using
both SHAP and BoCSoR, as shown in Figure 5. The solid
and dotted lines in the figure represent the average feature
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Figure 4: Experimental results on Dataset1 with three ML approaches. Violin plot of the maximum correlation between one
feature and all the others considering the 5 features having the most similar normalized value for SHAP and BOCSOR, and the
most dissimilar normalized value for SHAP and BOCSOR.

Figure 5: Experimental results with Dataset2 and three ML
approaches. The feature importance computed via BoCSoR
and SHAP with 10 repetitions and averaged by feature.
The color of the background indicates the groups of highly
correlated features (blue if important and replicated, orange if
unimportant and replicated).

importance measure provided by BoCSoR and SHAP, re-
spectively. We also added a colored background to the figure
to highlight the groups of highly correlated features, with
blue indicating important and replicated features, and orange
indicating unimportant and replicated features. Compared to
SHAP, BoCSoR exhibits greater importance values for in-
formative features (blue background) that are replicated and
therefore correlated. This behavior is consistent across all
three ML approaches, suggesting the robustness of BoCSoR
to feature correlation. Furthermore, the figure demonstrates
that BoCSoR displays a more stable behavior while measur-
ing the importance of informative and replicated features,
except for Catboost. These findings confirm the consistency
and effectiveness of BoCSoR in measuring feature impor-
tance for replicated and correlated features.

Figure 6: Correlation between the feature importance com-
puted via BoCSoR and SHAP on Dataset2 with three ML
approaches.

Table 2
Classification accuracy for Emotion and Social task of the HCP
data. Average % ± standard deviation.

Task GPC MLP Catboost
Emotion 64.36 ± 2.14 70.32 ± 3.72 73.29 ± 2.050
Social 62.14 ± 2.63 81.71 ± 1.90 80.05 ± 2.553

We assessed the agreement between SHAP and BoCSoR
in Figure 6 and obtained results similar to those obtained for
Dataset1.

Finally, we grouped replicated features based on their
maximum and minimum importance and compared the dif-
ference between SHAP and BoCSoR for each group. Figure
7 shows that, regardless of the ML approach used, BoCSoR
provides, on average, higher feature importance for impor-
tant but highly correlated features (i.e., the median of their
difference is > 0), and lower feature importance for less
important but highly correlated features (i.e., the median of
their difference is <= 0).
4.2. Real Datasets: fMRI data from HCP

To classify emotional states from the HCP data, we em-
ployed the three ML approaches introduced at the beginning
of Section 4. Table 2 presents the accuracy scores obtained
using a Monte Carlo 10 cross-fold validation schema. Cat-
boost and MLP achieved greater average accuracy compared
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Figure 7: Experimental results on Dataset2 with three ML approaches. Violin plot of the difference between the feature importance
measure computed via SHAP and BOCSOR. The difference is presented for the most and the less important features in the dataset
when those are replicated (and so correlated).

Table 3
Percentage of of boundary instances from which BoCSoR can
generate a counterfactual. Emotion and Social tasks with
the HCP data. CatBoost classifier. Average % ± standard
deviation.

Steps Emotion Social
2 53.45 ± 2.73 38.51 ± 4.65
3 64.29 ± 3.47 57.02 ± 3.41
5 76.31 ± 4.91 73.10 ± 3.96
10 87.98 ± 1.40 85.65 ± 3.40
20 93.51 ± 1.74 95.42 ± 1.80

to GPC, with an increase in accuracy of between 5 and 10
percent. When considering standard deviation, Catboost and
MLP had roughly comparable accuracy for the Social task,
while for the Emotion task, Catboost outperformed MLP in
terms of accuracy. Thus, we employ Catboost for further
experimentation on the HCP data, as overall it appears to
be the most accurate.

The steps parameter in BoCSoR determines the gran-
ularity of the counterfactual search around the decision
boundary. Opting for a low value for steps may result in
faster counterfactual searches but poorer space exploration,
and consequently, fewer counterfactuals. To investigate the
effect of different parameterizations on the number of gener-
ated counterfactuals, we conducted experiments using steps
values of 2, 3, 5, 10, and 20 with the HCP data. Table 3
presents the results obtained from these experiments.

Based on the results in Table 3, the percentage of in-
stances from which BoCSoR can generate at least one coun-
terfactual exhibits a sublinear increase as the steps parameter
increases. For our subsequent experiments, a steps parame-
terization of 10 can be considered a good trade-off, as the
improvement in the percentage of instances that result in the
generation of a counterfactual appears to plateau beyond this
value.

Figure 8: Experimental results on HCP-Emotion Processing.
Violin plot of the correlation between BOCSOR and SHAP
obtained via 10 repetitions with the 2 considered tasks. All the
correlation values shown below correspond to p-values lower
than 0.05.

We evaluated BoCSoR in terms of agreement with
SHAP as measured through the Pearson correlation coef-
ficient on the HCP data using Catboost as classifier. The
results obtained are presented in Fig. 8 via violin plots.

Our findings show that BoCSoR and SHAP are signifi-
cantly and positively correlated, but partially disagree.

We tested if the behavior occurring with Dataset1 and
Dataset2 was confirmed with the HCP data. Thus, we
rescaled the values of BOCSOR and SHAP via a min-max
procedure to make them comparable. Then, the five features
characterized by the most similar feature importance values
according to SHAP and BOCSOR were considered, together
with the five most dissimilar ones. For each feature, the 𝑀𝐶
is computed. According to our results, BoCSoR and SHAP
disagreed on the ranking of the most correlated features in
the Emotion Processing task. The graphical representation
of the corresponding 𝑀𝐶 values is presented in Fig. 9.
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Figure 9: Experimental results on HCP-Emotion Processing.
Violin plot of the maximum correlation between one feature
and all the others considering the 5 features that have the most
similar normalized value for SHAP and BOCSOR, and the 5
most dissimilar normalized values for SHAP and BOCSOR.
The purple line indicates the average maximum correlation
considering all the features in the data.

Our results show that there is a disagreement in the rank-
ing of the most correlated features between BoCSoR and
SHAP for the Emotion task data. Specifically, the 95% con-
fidence interval of the maximum correlation for the features
with the highest disagreement (agreement) between SHAP
and BoCSoR is higher (smaller) than the average correlation
of all features. In contrast, the data from the HCP-Social
task exhibits partial overlap between the 95% confidence
intervals of the maximum correlation for the features with
the highest disagreement and agreement between SHAP and
BoCSoR.

We further analyzed the importance matrices as adja-
cency structures, as shown in Figure 10 (left), and found
that for the Emotion Processing task data, several regions
of the temporal and occipital lobes have high importance
levels. Previous research has established that visual cortices
(LOcC and MVOcC) in the occipital lobe process visual
information, while the temporal associative areas (ITG and
FuG) from the fusiform gyrus are responsible for processing
the emotional meaning of objects, particularly faces [58].

Similarly, for the HCP-Social task data, we observed
consistent evidence in the functional connectivity of the
evoked activity, as illustrated in Figure 10 (right). The
fusiform gyrus appears to have a central role (highest node
degree) in connecting with the cingulate gyrus (CG). The
Basal Ganglia (BG) and the visual cortex (MVOcC) are
linked, indicating the cooperation between the emotion and
cognition regions and a visual area. Additionally, the BG
is associated with a multisensory association cortex (STG),
and regions dedicated to attention and visuospatial percep-
tion (SPL) and audiovisual emotional processing (MTG)
are also linked. Furthermore, a visual cortex (MVOcC) and
the somatosensory cortex, which represents body sensation
information (PoG), also have high importance values.

5. Discussion
This study presents a novel XAI methodology, BoCSoR,

which is employed to elucidate the classifications provided
by various ML approaches on synthetic and fMRI bench-
mark datasets. BoCSoR offers a global measure of feature
importance based on local counterfactuals, showcasing its
reliability, resilience to feature correlation, and computa-
tional efficiency in comparison to other state-of-the-art fea-
ture importance measures such as SHAP. Overall, this work
contributes to the advancement of the XAI field by providing
a new tool for understanding and interpreting the decisions
made by ML models, which can have significant implica-
tions across a broad range of applications. In this study,
BoCSoR explained the classifications provided by three
distinct ML approaches (CatBoost, Multilayer Perceptron,
and Gaussian Process Classifier) on two synthetic datasets
and two fMRI benchmark datasets. By utilizing only local
counterfactuals, BoCSoR offers a global measure of feature
importance. Our experiments demonstrate that it is a reliable
and robust method for feature importance assessment, even
when faced with correlated features. In comparison to other
state-of-the-art feature importance measures, such as SHAP,
BoCSoR is considerably more computationally efficient.

These properties are of importance for all XAI appli-
cations, especially for those addressing medical decision
support systems [29]. Indeed, given the wide variety of
features that can be extracted from the same physiological
measures and the absence of a gold standard, it is difficult
to determine the optimal subset of features to consider for a
given analysis. To avoid losing information, many different
features are often considered [59], which are highly likely to
have some degree of mutual correlation, possibly hampering
the reliability of SHAP and similar approaches [60; 61].

BoCSoR employs a model-agnostic, instance-based, and
exogenous XAI counterfactual approach. This means it can
be used to explain any classification approach for tabular
data. At the same time, BoCSoR does provide global feature
importance as an explanation form. Thus, BoCSoR belongs
to a novel thread in the XAI literature, in which different
explanation strategies are combined to generate new and
better ones [41].

If compared to other approaches able to combine feature
importance and counterfactual explanations, BoCSoR (i)
provides global feature importance [37; 39; 38], (ii) can
handle data with hundreds of features [39], and (iii) does not
rely on predetermined structured knowledge [36].

The presented experimental activities was aimed at an-
swering three research questions.

First, can BoCSoR be considered reliable as a measure of
feature importance? The relative nature of the ground truth
for feature importance allows us to make qualitative consid-
erations, thus validating the trend of the feature importance
measure presented in this study. As seen in Fig. 2, BoCSoR
displays fewer abrupt drops in importance than SHAP, par-
ticularly with GPC and Catboost, which is expected given
that noise within the data is incrementally added from the
6𝑡ℎ to the 15𝑡ℎ feature. Lastly, assuming SHAP as the
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Figure 10: Circular plots expressing the functional connections between macroregions in the Emotion (Left) and Social (Right)
HCP tasks. Green shade indicates the node degree and red shades represent the connection strength. In order to emphasize the
most relevant functional connections, just the 5 top-most important are displayed.

baseline measure, the correlation between SHAP and the
proposed measure (Fig. 3, 6 and 8), verifies that BoCSoR
effectively captures feature importance across all the ML
approaches utilized.

Second, does BoCSoR address the main weaknesses of
SHAP? That is, does it offer lower computational cost and
less sensitivity to features’ correlation? From our experi-
mental results, BoCSoR results in a computational cost that
is an order of magnitude smaller as compared to SHAP, for
both synthetic and HCP data. Furthermore, it is apparent in
all the analyses that the difference between feature impor-
tance calculated using BoCSoR and SHAP is related to the
correlation between the features. Features exhibiting high
correlation with others correspond to the largest differences
in SHAP vs BoCSoR feature importance (see Fig. 4, 7
and 9). This trend remains consistent for the two synthetic
datasets, irrespective of the ML approach employed. Yet,
this behavior does not occur with the HCP data for the Social
task, which is also the task with which the model performs
the worst. BoCSoR’s robustness to feature correlation is also
evident from a qualitative analysis of the results displayed
in Fig. 5. For all three ML approaches considered, BoCSoR
yields a higher average importance measure for informative
features (blue background) despite being replicated (and
thus correlated), and this behavior is consistent across all
three ML approaches. On the other hand, for the group
of replicated non-informative features (orange background),
the difference between BoCSoR and SHAP is not qualita-
tively apparent but is still quantitatively confirmed by the re-
sults in Fig. 7. Lastly, except for Catboost, BoCSoR exhibits
less fluctuating behavior while measuring the importance of
informative and replicated features, which substantiates its
consistency.

Third, can BoCSoR be employed to extract knowledge
from the trained AI model? The prominent connections high-
lighted by our method seem coherent with the most salient
functional connections reported in the literature for the HCP
emotional [40], [62], [63] and social tasks [40], [64], [65].
Indeed, the emotional task, built over a sequence of contrasts
between human faces expressing strong emotion (fear, panic,
anger, etc.) and simple emotionless object shapes, is known
to recruit both cortical visual areas and face emotion recog-
nition regions, in accordance with the connections we found
with BoCSoR. Similarly, the social task evokes both motor,
somatosensory, and associative cortical regions and these
were highlighted by BoCSoR importance rating. Therefore,
BoCSoR appears to identify the most salient functional
connections which are expected to be most active in the HCP
cognitive tasks analyzed in this paper.

6. Conclusion
We have introduced a new measure of global feature

importance, namely BoCSoR. BoCSoR utilizes local coun-
terfactuals obtained from instances close to the decision
boundary of a classifier to determine which features, if mod-
ified, are most likely to result in a change of classification.
Our experiments show that BoCSoR outperforms SHAP,
which is considered the gold standard for feature importance
in the literature. BoCSoR is more reliable, less sensitive to
feature correlation, and less computationally expensive.

The robustness of BoCSoR to the correlation among
features makes it particularly suitable for the analysis of
physiological data, where a high degree of correlation is
expected between multi-domain signals collected from the
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same subject. This is especially relevant in partial (i.e., ROI-
wise) brain data, making our approach an excellent candi-
date for any whole-brain neuroimaging or neuromonitoring
study.

To maintain low computational complexity (i.e., an order
of magnitude less wall-clock time compared to SHAP), the
counterfactual search utilized in BoCSoR is based on a linear
search starting from the neighborhood of instances close
to the decision boundary. However, this approach does not
guarantee the minimal distance between the instance and
the obtained counterfactual, nor does it guarantee the best
approximation of the decision boundary.

On the other hand, modifying the approach for generat-
ing counterfactuals could influence the feature importance
measurement. Given the way BoCSoR generates feature
importance, two properties of counterfactuals can have a
substantial impact: similarity and sparsity [31]. The sim-
ilarity of a counterfactual approach ensures the smallest
possible distance between an instance and its counterfactual
[31]. As demonstrated in our experimentation, a more fine-
grained search around the decision boundary can guarantee
an adequate number of counterfactuals to derive the feature
importance. The sparsity of a counterfactual approach en-
sures that there is the lowest number of modified features
between an instance and its counterfactual [31]. If em-
ployed by BoCSoR, this may result in fewer relevant features
per decision boundary instance (Algorithm 2), and conse-
quently, a feature importance measure skewed towards a
few features. However, according to experimentation in [31],
approaches that offer better similarity, such as CBCE [66],
and better sparsity, like DiCE [33], are up to three orders of
magnitude more computationally expensive than brute-force
approaches (i.e., the one used in BoCSoR). Nonetheless, the
growing literature on counterfactual explanation procedures
provides more sophisticated approaches that can strike a
better balance between decision boundary approximation
and computational cost. Future research will explore these
directions.

In summary, the proposed method, BoCSoR, offers an
efficient and reliable means of identifying the most impor-
tant features for classification in the context of physiological
data analysis. We believe that this approach will prove its
usefulness in various neuroimaging studies, where the iden-
tification of critical features is crucial for the development
of accurate and interpretable diagnostic tools.
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