
Spikiness Assessment of Term Occurrences in Microblogs: 
an Approach Based on Computational Stigmergy 

Mario G.C.A. Cimino1, Federico Galatolo1, Alessandro Lazzeri1, 
Witold Pedrycz2, and Gigliola Vaglini1 

1Department of Information Engineering, University of Pisa, Largo Lazzarino 1, Pisa, Italy 
2Department of Electrical and Computer Engineering, University of Alberta, Edmonton, T6R 2V4 AB, Canada 

mario.cimino@unipi.it, f.galatolo1@studenti.unipi.it, alessandro.lazzeri@for.unipi.it, 
wpedrycz@ualberta.ca, gigliola.vaglini@unipi.it  

Keywords: Microblog Analytics, Spikiness Assessment, Computational Stigmergy, Term Cloud. 

Abstract: A significant phenomenon in microblogging is that certain occurrences of terms self-produce increasing 
mentions in the unfolding event. In contrast, other terms manifest a spike for each moment of interest, 
resulting in a wake-up-and-sleep dynamic. Since spike morphology and background vary widely between 
events, to detect spikes in microblogs is a challenge. Another way is to detect the spikiness feature rather 
than spikes. We present an approach which detects and aggregates spikiness contributions by combination 
of spike patterns, called archetypes. The soft similarity between each archetype and the time series of term 
occurrences is based on computational stigmergy, a bio-inspired scalar and temporal aggregation of 
samples. Archetypes are arranged into an architectural module called Stigmergic Receptive Field (SRF). 
The final spikiness indicator is computed through linear combination of SRFs, whose weights are 
determined with the Least Square Error minimization on a spikiness training set. The structural parameters 
of the SRFs are instead determined with the Differential Evolution algorithm, minimizing the error on a 
training set of archetypal series. Experimental studies have generated a spikiness indicator in a real-world 
scenario. The indicator has enhanced a cloud representation of social discussion topics, where the more 
spiky cloud terms are more blurred. 

1 INTRODUCTION 

Microblogging systems are increasingly used in the 
everyday life, producing in real time a huge amount 
of informal and unstructured messages. In the 
literature, a research challenge is to identify and 
separate the temporal dynamics of a specific event, 
summarizing or visualizing such information in 
order to make it accessible to human analysts. A 
relevant dynamic is that certain occurrences of terms 
self-produce increasing mentions in the unfolding 
event, whereas other terms manifest a spike for each 
moment of interest, resulting in a wake-up-and-sleep 
pattern called spikiness (Gruhl & Guha, 2004), 
(Highfield et al., 2013). 

Automatic spike detection on Microblogs is a 
difficult task, because: (i) experts usually provide 
simplistic spike definitions; (ii) two human experts 
often do not mark the same events as spikes; (iii) the 
ratio of candidate spike events to actual spike events 
is large; (iv) spike morphology and background vary 

widely between events; (v) well defined training set 
are time consuming and expensive to develop. 

As an example, Fig. 1 shows the dynamics of 
some major terms used on Twitter during the 
terrorist attack in Paris on 13 Nov 2015, by gunmen 
and suicide bombers. In particular, Fig. 1a-c show 
different spike morphologies and durations: thought 
(short duration), killed (medium duration), and 
terrorism (long duration). Fig. 1d-e show different 
spikiness degrees: terrorist attack (low spikiness) 
and police (high spikiness). 

In the literature, many statistical and machine 
learning techniques have been used for the automatic 
spike detection (Yun, 2011), (Marcus et al., 2011), 
(Nichols et al., 2012), (Lehmann et al., 2012), 
(Birdsey et al., 2015).  In this paper we present an 
innovative technique based on computational 
stigmergy (Avvenuti, 2013), (Barsocchi, 2015), a 
bio-inspired paradigm of emergent systems. In the 
literature, a well-known form of stigmergy is 
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manifested by by societies of insects (Dorigo et al. 
2000), (Mohan et al. 2012).  

In the basic mechanism of stigmergic computing 
each sample of a time series releases a mark (i.e. a 
digital pheromone) in the scalar space, evaporating 
over time. As a result, marks with scalar and 
temporal proximity overlap, generating functional 
structures called trails. A trail enables a short-term 
and short-size granulation mechanism, appearing 
and staying spontaneous at runtime when local 
dynamics in samples occurs. A similarity operator is 
used to associate the dynamic of a sequence of 
samples against a collection of predefined sequences 
called archetypes. 
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(e) 

Figure 1: Three spikes morphologies and durations: (a) 
short spike duration, (b) medium spike duration, (c) long 
spike duration. Two spikiness degrees: (d) low spikiness, 
(e) high spikiness. 

The computational unit of our architecture is 
called Stigmergic Receptive Field (SRF) (Cimino et 
al. 2006). We use SRFs to detect the spikiness of 
time series generated by event-specific terms. In a 
SRF, the spikiness feature is modeled by a collection 
of archetypal spikes with different morphologies. 
The training of a SRF consists in optimizing its 
parameters via the Differential Evolution algorithm 
(Cimino et al. 2015), (Alfeo et al., 2016). The SRF 
compares the stigmergic trail released by an 
archetypal spike with the stigmergic trail of the 
current time series, and provides the measure of 
similarity. To combine the different spikiness 
morphology represented by the different archetypal 
spikes, the SRFs are arranged in a Stigmergic 

Perceptron (SP). Since the SP manages archetypal 
spikes of a specific scale, multiple SPs have been 
used to identify different sized spikiness. Finally, the 
spikiness indicator is generated through a linear 
combination of SRFs, whose weights are calculated 
by means of the Least Square Error minimization on 
some desired spikiness provided by human experts. 

The paper is structured as follow: Section 2 
summarizes the related works on spike detection in 
Microblogs. Section 3 comprises the design of the 
functional modules of our approach. Section 4 
covers the experimental studies. Finally, Section 5 
draws conclusions and future work. 

2 RELATED WORK 

Several authors studied the dynamics of 
temporal usage of terms in Microblogs, using 
distance measures for time series (Fu 2011), (Esling 
et al., 2012). Gruhl & Guha (2004) present three 
main types of topics pattern on blogs: (i) just spike: 
topics which at some point switch from inactive to 
very active, and then back to inactive; (ii) spiky 
chatter: topics with a significant chatter level, very 
sensitive to external world events; (iii) mostly 
chatter, topics continuously discussed at relatively 
moderate levels. Highfield et al. (2013) examine the 
use of Twitter for the expression of shared fandom 
in the context of the Eurovision Song Contest. The 
authors found that the presence of a spike is usually 
related to particular event occurred during the show. 

Yun (2011) distinguishes between three types of 
topic: peaky topics, constant topics and regularly 
repeated topics. The author defines specific criteria 
and uses statistical methods to differentiate the three 
categories. Marcus et al. (2011) identify spikes in a 
temporal collection of tweet, by computing the 
average rate of messages in a sliding window. More 
precisely, a spike is found when the rate in a window 
is a local maximum, i.e. the side windows have 
lower rates. Nichols et al. (2012) present an 
algorithm for spike detection used to summarize 
sporting events from Twitter messages. The 
algorithm is based on the change in the volume of 
the published tweet per minute according to a slope 
threshold. The threshold is computed for the entire 
event from basic statistics of the set of all slopes for 
that event. Similarly, Lehmann et al., (2012) study 
the daily evolution of hashtags popularity over 
multiple days, considering one hour as a time unit. 
The identification of an activity peak is based on the 
change in the volume according to a statistical 
baseline and a tunable threshold. They identify four 



 

different categories of spike-shaped temporal 
patterns, depending on the concentration around the 
event: before and during the event, during and after 
the event, symmetrically around the event, and only 
during the event. Birdsey et al. (2015) propose an 
approach based on four state of a topic: rising, 
plateau, burst, and stabilization. To identify the state 
the authors define a metric named intensity, which is 
directly proportional to the number of messages 
related to the topic and the number of total users 
(publishers), and inversely proportional to the total 
number of messages and the number of unique user 
posting on the topic. According to a threshold and 
the metric, the topic switches from a state to another. 

3 FUNCTIONAL DESIGN 

This Section formally introduces the major 
functional components of our algorithm.  

 
3.1 The Stigmergic Receptive Field 

Let  denote the values of a time series at 
discrete-time k. A linear transformation of the time 
series called min-max normalization is assumed: 
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which is a linear mapping of the data samples in the 
interval [0,1], where the bounds  and  are 
estimated in an observation time window. To assure 
samples are positioned between 0 and 1, the results 
are clipped to [0,1]. 

Normalized data samples are processed by 
clumping, in which samples of a particular range 
group close to one another. Clumping is a kind of 
parametric soft discretization of the continuous-
valued samples to a set of levels: 
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As an implementation of clumping, we adopt the 
s-shaped function, shown in Fig. 2a. Given 

, (0,1)C C    input values smaller | larger than (βC 

– αC)/2 are lowered | raised; values smaller | larger 
than αC | βC assume the minimum | maximum value, 
i.e., 0|1. Fig. 2b shows an example of series, in 
dotted line, and the effect of the clumping, in solid 
line. 

Clumped data samples are processed by 
marking, in which each sample produces a 
corresponding mark: 

 1 2( ) Marking( ( ); , )CM k d k    (3) 

As an implementation of marking, we adopt the 
trapezoid function, shown in Fig. 3, defined by the 
center ( )Cd k , a fixed height equals to 1, upper and 

lower-bases, ε1 and ε2. Since the ratio ε1/ε2 is 
statically prefixed to 2/3, we can refer to the mark as
Marking( ( ); )Cd k  . 

(a) (b) 

Figure 2: The s-shaped function with 0.22c  and 

0.76c  (a), and the clumping (solid) of the input series 

(dotted). 

 

Figure 3: The trapezoidal mark, centered in 0.5cd  , 

with 1 0.4  and 2 0.6  . 

With the trailing, the evaporation and the 
accumulation of the marks over time create the trail 
structure: 
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The evaporation is regulated by the rate 
0 1  . Fig. 4a and Fig. 4a show the release of a 

mark with 2 0.24   on (0) 0cd  , and the trail after 

the evaporation with 0.34  and the release of the 
second mark on (1) 0cd  . 



 

 

(a) (b) 

Figure 4: (a) The release of a mark with ε2 = 0.24 on dC (0) 
= 0; (b) The trail after the evaporation with 0.34   and 
the release of the second mark on dC (1) = 0. 

 

As a consequence, an isolated mark tends to 
disappear from the trail, reducing the influence of 
spurious samples in the temporal pattern. In contrast, 
subsequent marks sum their intensities if 
superimposed with other marks generating a more 
persistent structure. 

A Stigmergic Receptive Field (SRF) is fed by 
two time series, i.e., ( )d k  and ( )d k . Given a 

sliding time window, of size N, it takes two parallel 
segments { ( )}

N
d k  1{ ( ),..., ( )}Nd k d k  { ( )}

N
d k 

and 1{ ( ),..., ( )}Nd k d k , and returns the activation 

( ) [0,1]a h  , which is close to 0 | 1 if the two 

segments are dissimilar | similar. As an example Fig. 
5 shows two input parallel segments, with N=25. 

 

 
(a) (b) 

Figure 5: Two input segments (a) { ( )}d k and (b) 

{ ( )}d k of a Stigmergic Receptive Field. 

In a SRF, the two segments are processed in 
parallel, by means of clumping, marking and 
trailing, thus generating two corresponding trails 

( )T k  and ( )T k . Subsequently, the similarity 

between the two trails is computed: 

 ( ) Similarity( ( ), ( )) [0,1]s h T k T k   (7) 

As an implementation of similarity, we adopt the 
Jaccard’s coefficient, which is the ratio between the 
intersection and the union of the trails: 

 ( ) ( ) ( ) ( ) ( )s h T k T k T k T k   (8) 

As an example, Fig. 6 shows two trails (in solid 
and dotted line), the intersection (dark gray), and the 
union as the area covered by the light gray, dark 
gray, and the white areas underlying the trails. 

 

 

Figure 6: Representation of the intersection and union 
between two trails. 

We remark that for each pair of segment, each 
made by N samples, a single similarity sample s(h) 
is released, i.e. /N k h , 1N  . 

Finally, the activation of the similarity sample is 
computed: 

 ( ) Activation( ( ); , )A Aa h s h    (9) 

As an implementation of activation, we adopt the 
s-shaped function. The activation increases | 
decreases the rate of similarity potential firing the 
SRF. The term “activation” is borrower from neural 
sciences: it inhibits low intensity signals while 
boosts signals reaching a certain level to enable the 
next layer of processing (Cimino, 2009). 

We remark that, although the clumping and the 
activation are implemented by the same function, 
their meaning is very different. Indeed, in contrast to 
the activation, the clumping may be implemented by 
a multi-level s-shape function, when different levels 
of interest are comprised in the input space. 

 
 3.2 The Adaptation of the SRF 

The SRF should be properly parameterized to 
enable an effective aggregation of input samples and 
output activation: 
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For example, short-life marks evaporate too fast, 
preventing aggregation and pattern reinforcement, 
whereas long-life marks cause early activation. 

The adaptation is an offline function, taking as 
an input a SRF and a tuning set made by a set Z of 
(input, desired output) pairs. As an output, the 
adaptation provides a set of structural parameters of 
the SRF: 
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As an implementation of adaptation, we use the 
Differential Evolution algorithm. In (Cimino, 2015), 
the authors carry out a comparative study of three 
evolutionary algorithms: Particle Swarm 
Optimization, Genetic Algorithm, and Differential 
Evolution. As a result, the latter shows better 
performance both in speed and quality of the 
solution. The fitness function is the Mean Squared 
Error (MSE) between the output SRF' provided for a 
certain input and the desired output SRF provided in 
the tuning set for the same input: 

  21
( ) z z

z

f Z SRF SRF
Z

   (12) 

The objective is to train the SRF to accurately 
recognize the (dis-)similarity between segments. 

 
3.3 The Stigmergic Perceptron 

A single SRF can be used to recognize the (dis-
)similarity between a time series and an archetypal 
time series, which represents a pattern. In the 
spikiness domain, we can have more than one 
archetype. Fig.7 shows three spikiness archetypes in 
a time window. Here, the different positions of the 
archetypes represent an early, a timely, and a late 
spike. This allows identifying the spike 
independently on the temporal shift with respect to 
the time window. 
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Figure 7: Spikiness archetypes: (a) early spike; (b) timely 
spike; (c) late spike. 

A Stigmergic Perceptron takes as an input the 
output of each SRF, one per each archetype, and 
provides the output of the SRF with the best 
activation: 

  ( ) SP ( )g h SRF h     (13) 

As an implementation of the SP, we use the 
maximum between the activations: 

  ( ) max ( )SRF SRFg h a h  (14) 

 
3.4 The Spikiness Information Fusion 

The assessment of the spikiness level of the 
overall series is based on the aggregation of three 
different Stigmergic Perceptrons. Each SP employs 
different archetypes: short spike duration, medium 
spike duration, and long spike duration. The 
assessment is based on a number of U non-
overlapping time windows, for each SP. The outputs 
of each SP are summated: 
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Given that there are no dependencies between the 
processing of each SP, the values of Ai can be 
computed in parallel. 

Finally, the activation values kA  are aggregated 
by means of a weighted sum to generate the 
spikiness level: 
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the weights iw  are determined through a standard 
Least Square Error optimization, which minimizes 
the error with respect to a set of spikiness level 
generated by human observation: 

  *Optimization { },{ } { }LEVEL iSP S w  (17) 

It follows (Algorithm 1) the overall algorithm for 
the calculation of the spikiness level of a set of given 
time series {D}. 

4 EXPERIMENTAL STUDIES 

To study the effectiveness of the algorithm, we have 
analyzed a dataset of 188,607 Twitter posts collected 
during the terrorist attacks in Paris on November 13, 
2015, between 9 PM of November 13 and 2 AM of 
November 14. 

The dataset was first pre-processed by removing 
stop words, i.e., common words used in a language. 
We also removed the historical baseline, i.e., a set of 
terms generally related to the class of the event 
rather than to its specific occurrence. Subsequently, 
the most frequent 100 terms were selected, and the 
corresponding time series were generated using a 
time windows of 1 minute.  

The time series were annotated by a group of 
four human annotators, who assigned two different 
indicators to each series:  
(i) spikiness level: it is an integer ranging from 0 

(no-spikiness) to 4 (maximum-spikiness). As an 
example, the series of Fig.1d and Fig.1e have 
spikiness levels 1 and 4, respectively. In general, 
the spikiness level is proportional to the number 
of occurrences of the wake-up-and-sleep 



 

dynamic. The spikiness level is then normalized 
dividing by 4. 

(ii) spikiness dimension: it is the characterization of 
the overall durations of spikes. Let us assume the 
three types of spike represented in Fig.1 a-c, with 
an order: 1: short, 2: medium, 3: high. Let us 
consider the series of Fig.1e: since the medium 
duration is the most frequent, and the short 
duration is less frequent, the spikiness dimension 
is 2|3|1. Considering Fig.1d, the short duration is 
the most frequent, and the long duration is the 
less frequent. Thus, the spikiness dimension is 
1|2|3. Actually, the most wake-up-and-sleep 
dynamics are not complete in Fig.1e, but our 
focus is on spikiness rather than on spikes. 
 

Algorithm 1: Spikiness ({ }) 
D  MinMaxNorm( ) 
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     end for 

     ( ) Similarity( ( ), )s h T k T  
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 end for 
end for 

 { };{ }LEVEL i iS SIF A w  

return SLEVEL 
 
Each annotator observed all the time series to 

have an overview of the temporal patterns. Finally, 
the annotators achieved consensus providing the 
indicators for each time series.   

Table 1 shows the confusion matrix of the human 
classification compared with the same output 
provided by the system. We remark that the 86% of 
the time series are correctly identified by the system 

(diagonal values, represented in boldface). A 
significant number of misclassification is between 
the dimensions 2|1|3 and 1|2|3, which means that 
some spikes with short and medium duration are 
inversely ranked. 

The evaluation of the error on spikiness level is 
calculated with a 5-fold cross-validation: we divided 
our dataset into five randomly generated and 
equally-sized folds. Then, we used each fold as a test 
set and the remaining folds as a training set. Finally, 
we calculated the average MSE standard deviation, 
as shown in Table 2. We remark that the MSE on the 
training and test sets are very similar, thus 
confirming the good generalization of the system. 
We also remark that MSE is less than half of the 
difference between two spikiness levels (1/4 = 0.25), 
thus confirming a good accuracy. Finally, the 
standard deviation is more than an order of 
magnitude lower than the MSE, thus showing a good 
precision. 

Table 1: Confusion matrix of the spikiness dimension. 
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1|2|3 21 0 4 0 0 0 
1|3|2 0 4 2 0 0 0 
2|1|3 2 0 53 1 0 0 
2|3|1 1 0 3 7 0 0 
3|1|2 0 0 0 0 1 1 
3|2|1 0 0 0 0 0 0 

Table 2: Fitness of the 5-Fold Cross Validation. 

MSE (mean ± standard deviation) 
Training Set Test Set 

0.1146±0.0037 0.1197±0.0184 

 
As a final result, the spikiness level has been 

used to enrich the term cloud representing the 
content of the discussion topics of a given event. 
Fig.8 shows an excerpt of a term cloud with a blur 
proportional to the spikiness level. Here, it is 
apparent that even large terms can have a high 
spikiness level, and those terms without spikiness 
are clearly discerned. 

5 CONCLUSIONS 

This paper presents an innovative computational 
technique for assessing the spikiness of terms in 
microblogs. The core processing is based on 



 

computational stigmergy, a bio-inspired mechanism 
for scalar and temporal processing of time series. 
Experimental results have shown a very high 
number of correctly detected spikiness dimension, 
and a very low error on spikiness level for training 
and testing sets. The spikiness indicator has been 
visualized in a term cloud as a blur effect, making it 
apparent. To conduct performance evaluations on 
other datasets as well as comparative analyses with 
other approaches is considered a key investigation 
activity for future work.  

 
 

 

Figure 8: An excerpt of the term cloud with blur 
proportional to the spikiness level. 
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