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Abstract: The analysis of credit card transactions allows gaining new insights into the spending occurrences and 

mobility behavior of large numbers of individuals at an unprecedented scale. However, unfolding such 

spatiotemporal patterns at a community level implies a non-trivial system modeling and parametrization, as 

well as, a proper representation of the temporal dynamic. In this work we address both those issues by means 

of a novel computational technique, i.e. computational stigmergy. By using computational stigmergy each 

sample position is associated with a digital pheromone deposit, which aggregates with other deposits 

according to their spatiotemporal proximity. By processing transactions data with computational stigmergy, 

it is possible to identify high-density areas (hotspots) occurring in different time and days, as well as, analyze 

their consistency over time. Indeed, a hotspot can be permanent, i.e. present throughout the period of 

observation, or intermittent, i.e. present only in certain time and days due to community level occurrences 

(e.g. nightlife). Such difference is not only spatial (where the hotspot occurs) and temporal (when the hotspot 

occurs) but affects also which people visit the hotspot. The proposed approach is tested on a real-world dataset 

containing the credit card transaction of 60k users between 2014 and 2015. 

1 INTRODUCTION 

The extensive usage of nowadays pervasive 

technologies generates a large number of digital 

traces associated with each human activity. Few well-

known examples are social media posts (Cimino et 

al., 2018), vehicle GPS traces (Alfeo et al., 2018), 

mobile phone records (Louail et al., 2014), smart 

cards usage (Zhong et al., 2015), and credit card 

transactions (Dong et al., 2018). Among the many 

possible sources, transactions’ datasets can provide 

insights about the daily activities of large numbers of 
individuals, allowing the analysis of both their 

spending occurrence and mobility behavior at 

unprecedented scale (Dong X. et al., 2018). Indeed, 

individuals’ purchases result from the combination of 

their needs, habits, well-being and where they can go 

shopping. Moreover, each shopping choice drives 

individuals’ movement (Krumme et al., 2013). By 

analyzing both the spending occurrences and the 

mobility patterns of the consumers it is possible to 

gain new insights about individuals’ behavior (Singh 

et al., 2015), as well as understanding the structure 

and usage of a given urban area (Long & Liu, 2016). 
One method for such urban areas characterization 

employs the detection of purchase hotspots, i.e. 

locations with a significant occurrence of purchase 

events (Sobolevsky et al., 2015). By means of a 

hotspots analysis, many works in the field address the 

managing of different urban operational problem 

(Sobolevsky et al., 2014), such as transportation 

services’ demand (Fuchs et al., 2015) (Oh et al., 

2004). However, the results provided by the hotspots’ 

detection should also take into account the hotspot 

dynamics, i.e. their changing over space and time 
(Brimicombe, 2005). Indeed, hotspots’ occurrence 

may be due to large time-scales (e.g. seasonal, 

weekly) regularities, or according to real world events 

such as holidays and sales (Uncles et al., 1995). In 

this context, there has not been sufficient research on 

characterizing hotspots from a dynamic perspective 

(Khan et al., 2017). To address this problem, we 



 

propose an approach aimed at unfolding purchase 

hotspots and characterize their spatial and temporal 

dynamics. Our approach employs a novel 

computational technique based on the principle of 
Stigmergy, a self-organization mechanism used by 

social insect colonies and based on the deposit of 

pheromone marks. Since pheromones are volatile, a 

pheromone trail (i.e. the marks aggregation) appears 

only in areas characterized by a consistent deposit 

activity. By applying this pheromone-like 

aggregation to purchase event occurrences, the 

resulting trail is able to summarize their 

spatiotemporal density, enabling the detection of 

hotspots. Such approach is known as Computational 

Stigmergy, and can be used to detect the hotspots 
(Alfeo et al., 2018) and characterize their occurrence 

over time according to their similarity in different 

time instants. An interesting property is that this 

similarity between hotspots can be extracted from 

data, and then used to carry out a clustering process 

on the corresponding relational space (Cimino et al., 

2006). In this paper, the Computational Stigmergy is 

used with a real world dataset provided by a large 

Turkish financial institution’s, consisting of all credit 

card transactions made in 12 months between 2014 

and 2015 from more than 60k customers. In the 

following sections we present our approach and the 
results obtained by analyzing those data. In Section 2 

we briefly present a literature review about the 

approaches based on hotspot analysis. In Section 3 we 

detail the proposed approach, whereas in Section 4 

the experimental setup and the obtained results are 

discussed. Finally, we draw the conclusions of this 

study in Section 5.  

2 RELATED WORKS 

The notion of hotspots, i.e. a location with relatively 

high levels of activity, was firstly used in order to 

understand the occurrence of criminal activities 

(Sherman et al., 1989) (Chainey et al., 2008). 

Nowadays, the usage of the concept of hotspot has 

been extended to a number of different context such 

as epidemiology (Martinez-Urtaza et al., 2018), 

transportation (Alfeo A.L. et al., 2017), and social 

science (Zhu & Newsam, 2016).  

Indeed, the hotspot detection and analysis is more and 
more exploited by researchers, thanks to its ability of 

summarize and gain insights into complex 

phenomena, resulting in applications ranging from 

urban planning (Liu et al., 2012) to behavioral 

analysis and activities forecasting (Dong et al., 2018) 

(Scholz & Lu, 2014). In this context, two main 

approaches are used to detect the hotspots: those are 

respectively based on a statistical and density-based 

characterization the occurrences (e.g. smart card 

usage, trips) under investigation. 
As an example, an approach of the first group aims at 

detecting hotspots by employing spatial 

autocorrelation indicators (Yang et al., 2016). In (Yu 

& He, 2017) authors exploit a heat map to study the 

discrete distribution of travel demand at the bus stops 

in order to unfold trip hotspots. However, one of the 

main difficulties with these approaches remains the 

inclusion of the time domain in the analysis (Klemm, 

et al., 2016). 

The second group of approaches aimed at detecting 

hotspot employs the concept of spatial and temporal 
density. As an example, in (Hu et al., 2014) authors 

exploit a kernel density approach to represent 

multiple mobile objects as a density surface and 

extract its geometric features to analyze the hotspot 

distribution. Again, in (Senaratne et al., 2014) authors 

utilizes a kernel density estimation to detect hotspot 

clusters of social network activities and analyze their 

trajectory over time, allowing the detection of urban 

events (e.g. concerts). However, two shortcomings 

characterize most of these approaches: (i) the 

temporal component is neglected or represented by 

just adding a further dimension to the problem, thus a 
proper representation and analysis of the temporal 

dynamics is missing (Yuan et al., 2017); (ii) the hard-

to-manage exploration of different analysis 

parametrization, which is a fundamental feature since 

each phenomenon is visible at a specific scale and 

resolution (Atluri et al., 2018)(Yuan & Raubal, 

2012). In this work, we address both those issues by 

using Computational Stigmergy. Indeed, 

Computational Stigmergy intrinsically embodies the 

time domain (Barsocchi et al., 2015) and allows 

adapting the analysis by tuning its structural 
parameters. Specifically, in (Alfeo et al., 2018) the 

design of a stigmergic similarity with parametric 

adaptation is driven by evolutionary computation, and 

based on spatio-temporal context history. This 

approach represents a valid alternative to spatio-

temporal similarities based on semantic rules 

(Ciaramella et al., 2010), which are characterized by 

domain-dependence and limited adaptability, even 

when applying evolutionary parametric adaptation. 

3 FUNCTIONAL DESIGN 

The proposed approach is based on the principle of 

stigmergy, a self-organization mechanism used in 

ants’ colonies (Marsh & Onof, 2008). With 



 

stigmergy, the occurrence of a specific condition (e.g. 
an individual discovering food) corresponds to the 

release of a pheromone mark in a shared environment. 

Due to the volatility of the pheromones, isolated 

marks evaporate and eventually disappear, whereas 

marks subsequently deposited in proximity to each 

other aggregate, resulting in a long-lasting and stable 

pheromone trail. By following the pheromone trail, 

the colony is steered toward the region in which the 

condition above (e.g. the discovery of food) occurs 

consistently, since only such consistency generates 

the density of marks needed to generate a stable trail. 
To the end of unfolding spatiotemporal density in the 

data, we process them by employing such 

mechanism. 

The overall processing schema is known as 

Computational Stigmergy (Alfeo A.L. et al., 2017). 

Specifically, with Computational Stigmergy, a virtual 

pheromone deposit (i.e. a mark) is released in a virtual 

environment (Fig. 1b) in correspondence to the 

location and time of appearance of each data sample 

(Fig. 1a) , i.e. a credit card transaction. The marks are 

represented by a truncated cone with a given width Ԑ 

and intensity (height). Moreover, marks are subject to 
an evaporation process, i.e. a temporal decay with rate 

δ (Fig. 1c). Thanks to the evaporation, isolated mark 

progressively disappears, whereas marks that are 

frequently released in proximity to each other 

aggregate forming the trail. In a nutshell, the trail 

appears and stays only in correspondence of 
consistent marks depositing activity, thus can be 

considered as a summarization of spatiotemporal 

density in the data (Alfeo A.L. et al., 2017). Eq. 1 

describes the trail Ti at time instant i, resulting by the 

evaporation of the trail Ti-1 and the aggregation of the 

set of Marksi at the time instant i. 

 

T� � T��� � δ � Marks�                   (1) 

 

As shown in Fig. 1d, in order to detect the significant 

part of the trail (i.e. corresponding to a potential 

hotspot Hi  at time i), it is necessary to set a threshold 

τ, i.e. a given percentage of the maximum intensity of 

the trail ( Eq. 2). 

 

H� � T� �  τ                             (2) 

 

Different hotspots can be compared by means of the 

Jaccard similarity (Niwattanakul et al., 2013). Such 

measure of similarity is computed as the ratio 

between the intersection (⋂) and the union (⋃) of the 

areas underlying the hotspots (e.g. HA and HB in Fig. 

1e and Eq. 3), and it is defined between 0 (completely 

different hotspots) and 1 (identical hotspots).  
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Fig. 1.  Architectural modules of the mechanism aimed at detecting hotspots via Computational Stigmergy. 

 

Fig. 2.  Samples processing phases. Each sample in a given time instant (a) is transformed into a mark (b); each mark aggregates

with the marks released in previous time instants and properly “evaporated” (c-d); a threshold is used to identify the areas

corresponding to the significant part of the trail (e-f); those areas are compared to measure their similarity (g). 



 

 

Thanks to this similarity measure it is possible to 

identify hotspots on the basis of their temporal 

consistency, i.e. their similarity in different time 
instants. For the sake of clarity, we depict the phases 

of the hotspot detection and analysis with a set of 

samples belonging to 3 consecutive time slots in Fig. 

2. Each of the presented processing steps is 

parameterized, and each parameter represents a 

feature of the potential hotspot. Specifically, the 

marks width Ԑ and the evaporation δ results in the 

spatial and temporal proximity allowing marks to 

aggregate and form the trail; by tuning such 

parameters we define the spatio-temporal density of a 

potential hotspot. On the other hand, the threshold τ 
defines the significant amount of spatiotemporal 

density corresponding to a hotspot. By employing a 

heuristic or a measure of the quality of the hotspots’ 

detection process, it is possible to tune those 

parameters with the aim at specializing the detection 

of the hotspots to the peculiarities of the scenario 

under analysis, as specified in Section 4.  

4 EXPERIMENTAL RESULTS 

The approach presented in Section 3 has been 

developed in Matlab, a well-known versatile high-

performance environment equipped with functions 

and syntax to work with big data. We experiment our 

approach on a credit card transactions dataset 

provided by a major financial institution in Turkey. 

Such dataset consists of more than 10 million 

transactions instances made by more than 64k 

individuals during a period of twelve months. Each 

instance is composed by the following attributes: 
customer id, timestamp, amount, shop id, online, 

expense type, currency, latitude coordinates, and 

longitude coordinates. Moreover, we work with an 

additional dataset containing a number of 

demographic information about each individual, such 

as age, gender, education level, income, home, and 

work location. The customer-level data are 

anonymized by representing each customer with a 

pseudo-unique number. By exploring the spatial 

distribution of the transactions in the dataset it is 

evident that most of them occur in Istanbul 
metropolitan area, thus we decide to focus the 

analysis on such area. The data undergo a pre-

processing phase consisting of the spatial and 

temporal discretization. Each bin corresponds to a 

square area of 100 meters side and a time interval of 

20 minutes. As mentioned in Section 2, the 

occurrence of hotspots alone provides an incomplete 

overview of the purchase phenomenon (Uncles et al., 

1995). What is really interesting is the consistency of 

the hotspots’ over time. Indeed, a hotspot can be 

permanent, i.e. present throughout the period of 
observation, or intermittent, i.e. present only in 

certain times and days of the week (Louail et al., 

2014). Most of the works in the field detect a weekly 

hotspot routine (Alfeo A.L. et al., 2018). Thus, we 

define two types of days (weekends and weekdays) 

and we split each day into 12 time slots, 2 hours each. 

In contrast to permanent hotspots, the intermittent 

hotspots are peculiar for each tuple [day type; time 

slot] within the same month.  

Fig. 3.  Transactions’ location (GPS) spatial distribution. 

To detect both intermittent and permanent hotspots, a 

number of parameters have to be properly set. The 

evaporation must guarantee the preservation of (even 

a part of) the information (i.e. the mark) for the whole 

time of the analysis. If looking for permanent 

hotspots, this time corresponds to a whole day, while 
with intermittent hotspots, it corresponds to 2 hours 

(a time slot). Thus, in the first case, the evaporation 

δP is set to 0.01 whereas in the former one δI is set to 

0.15. The mark intensity is set to 1, whereas its width 

Ԑ is set to 10, enabling the aggregation of marks 

which distance is up to 1 km. The most sensitive 

parameters of the analysis are the thresholds for 

permanent τP and intermittent τI hotspots. For this 

reason, they are set through an iterative exploratory 

analysis aimed at maximizing only the similarity 
between intermittent hotspots of similar temporal 

tuples. As an example, in Fig. 4 we show a similarity 

matrix obtained from the comparison of the 

intermittent hotspots for each time slot of each day of 

September 2014. To a lighter color corresponds a 

greater similarity (1 on the diagonal). Clearly, there is 

a consistency of the hotspots (a greater similarity) in 

correspondence of time windows corresponding to 

similar occurrences. For example, it is possible to 

identify a strong similarity between weekend 

daytimes hours, the evening and night hours between 

Saturday and Sunday and the daytime hours of the 
working days. The clearer the distinction between 



 

these groups of days, the better the parameterization 

of the analysis. 

By definition, intermittent hotspots of a given tuple 

are supposed to be similar to each other within the 
same month. On the other hand, the permanent 

hotspots occur on average all days and time slots, thus 

their presence may interfere with the similarity 

computation between hotspots obtained with 

different tuples. For this reason, we (i) firstly, identify 

permanent hotspots as the intersection of the areas 

underlying the significant part of the trails in all days, 

then (ii) we remove the transactions occurring in 

those areas, and finally (iii) intermittent hotspots are 

targeted in order to maximize the similarity between 

hotspots of the same tuples or temporally close tuples.  
Fig. 5 shows the procedure described above together 

with the 10 permanent (in red) and the 9 intermittent 

(in cyan) hotspots discovered.  

 

 
Fig. 4.  Similarity matrix obtained by matching the 
Intermittent hotspots during September 2014.  
 

In the absence of a ground truth on the distribution 

and nature of the hotspots, we discuss the obtained 

results according to the features of the people 

spending in the hotspots. Specifically, it is possible to 

evaluate the characteristics of the users using the 

permanent or intermittent hotspots from the 

demographic data associated with the transactions 
dataset. 

For each customer it is known his/her income, age, 

and level of education, i.e. unknown (reported as 0), 

non-educated (as 1), elementary school (as 2), middle 

school (as 3), high school diploma (as 4), college (as 

5), university degree (as 6), master degree (as 7), and 

Ph.D. (as 8). Moreover, it is known the location of 

customers' home (homeu), workplace (worku), and 

transactions (shopui). Using such information it is 

possible to calculate the bin-wise distance of each 

purchase event (Eq. 4) as the minimum distance 

d(homeu shopui) between the shop and the workplace, 

and the distance d(worku, shopui) between the shop 
and the home (Singh, Bozkaya, & Pentland, 2015). 

 
Distui = min( d(homeu, shopui), d(worku, shopui) )  (4) 

 

 
Fig. 5.  Discovery process and resulting intermittent (cyan) 
and permanent (red) purchase hotspots in Istanbul.  
 

By using the purchase distance, it is possible to 

evaluate few behavioral traits of the customers: (i) 

how exploratory each customer is when looking for 

places to shop, measured as the average purchase 

distance (avgDist in Fig. 6); and (ii) how erratic each 

customer is when looking for places to shop, 

measured as the standard deviation of the purchase 
distance (stdDist in Fig. 6). 

Fig. 6 shows the results obtained from this analysis 

by means of violin plots. The violin plots represent 

the distribution of the demographic features for the 

population purchasing in each type of hotspot. As 

demographic features, we show individuals’ 

education level (edu in Fig. 6), income, age, and the 

metrics for exploratory and erratic behavior. Overall 

their distribution is not significantly different, 

exception made for their average income, which is 

greater in the case of intermittent hotspots. 

The different average incomes among the people 
using the intermittent and permanent hotspots can be 

explained by considering the number of credit card 

transactions per customer, which is relatively low, i.e. 

on average 68 transactions per user throughout the 

year of observation. Therefore, for a hotspot to be 

“permanent” it must be able to attract as many people 

as possible, and this results in an average income 



 

closer to the one of the whole dataset, i.e. 2979 

Turkish liras. On the other hand, intermittent hotspots 

are associated to occasional activities such as those 

related to nightlife, and these activities are more 
likely to be performed by people with higher incomes. 

 

 
 
Fig. 6.  Demographic features of the population purchasing 

in the hotspots. Log scale. The average income of the 

population purchasing in each type of hotspot is reported in 
squares. 

5 CONCLUSIONS 

In this work, we have proposed an approach based on 

Computational Stigmergy to detect and analyze 

purchase hotspots according to their spatial 

distribution and temporal occurrence. The presented 

approach overcomes the limitations of many 

approaches in the literature that is the poor 

representation of the temporal dynamic and the 

inadequate exploration of the solutions space. By 

using our approach, we analyze the occurrence of the 

transactions of 60k Istanbul residents between 2014 

and 2015. The results of such analysis confirm the 

validity of our approach to identify permanent and 

intermittent hotspots. Moreover, the analysis of the 

users spending in each type of hotspot is provided. As 

future works we aim at (i) studying the attractiveness 

of the areas identified as hotspots using a gravity 

model, and (ii) carrying out an analysis of the 

anomalies in the purchase activity, such as the one 

detectable by observing Fig. 4, in the group time slots 

immediately ahead of the 200th; apparently those are 

characterized by intermittent hotspots very similar to 

each other but completely different from all the others 

in any time slot, therefore a potential anomaly in the 

purchase activity.  
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