
SERVER-SIDE WEB SERVICES

Mario G.C.A. Cimino

Department of Information Engineering

Page 2 of 9

Apache Axis and Apache Ode

 Download the all-in-one package and extract it to C:

http://www.iet.unipi.it/m.cimino/sse/res/sse_extract_to_C.zip

- Apache6 Tomcat is a Java servlet1 container. To start/stop the web server use

c:\sse\hutdownApache and c:\sse\startupApache

 The package contains the servlets Apache Ode and Apache Axis2, deployed as a WAR2

 After startup, point the browser to http://localhost:8080 to test the web server

 Apache Axis2 is a Web Services / SOAP / WSDL engine

http://localhost:8080/axis2/ as a first test.

Click on Services to see the available ones.

1 Java server side components to extend the capabilities of an application server.
2 A WAR file (or Web application ARchive) is a JAR file used to distribute Java-based web applications. In general, to deploy a war, put it into the webapps folder of tomcat.

Periodic

check on the

status of

services or

processes

Page 3 of 9

 Open the c:\myapp\Calculator\Calculator.java file

public class Calculator {

 public int add(int i1, int i2) {

 return i1 + i2;

 }

 public b subtract(int i1, int i2) {

 return i1 - i2;

 }

}

 Click on make.bat to compile it. Copy the c:\myapp\Calculator folder to

C:\sse\apache6\webapps\axis2\WEB-INF\services

The Tomcat console will show some deployment info

 Test the Calculator service on http://localhost:8080/axis2/ → click on Services.

 Click on the Calculator link:

http://localhost:8080/axis2/services/Calculator?wsdl

You will get the WSDL description of the Calculator service.

Page 4 of 9

wsdl:definition : root element, with the

target namespace and some other

fundamental attributes

wsdl:types: data types used by operations,

as input, output, and fault types. Often data

types are specified using XML schema

wsdl:message: defines the messages to

exchange and the related types (wsdl:types)

wsdl:portType (interface) – defines

operations with input and output which

refer to the messages (wsdl:message)

wsdl:binding: network

protocols and soap data

format specification

(document-centric or

rpc)

wsdl:service: defines

the endpoints

(addresses) associated

to the binding

(wsdl:binding), with one

or more logical port

name https://www.w3schools.com/xml/xml_wsdl.asp

Page 5 of 9

 Point the browser to http://localhost:8080/axis2/services/Calculator?xsd for data types

 Create a sample request by using SoapUI, as in the Client-side WS tutorial.

 Use it with sendsoap, as in the Client-side WS tutorial.

Page 6 of 9

 Remove the C:\sse\apache6\webapps\axis2\WEB-INF\services\Calculator folder

 The Tomcat console will show some undeployment info

 Add a divide method to the c:\myapp\Calculator\Calculator.java file. Create and test

the new web service.

 Create a web service with a new name, DistilledWater:

(i) make a copy of the folder c:\myapp\Calculator

(ii) rename the folder Calculator as DistilledWater

(iii) in the file META-INF\services.xml, replace the two occurrences of the term

Calculator with DistilledWater

(iv) rename the file Calculator.java as DistilledWater.java

(v) update the internal java implementation of DistilledWater.java

(vi) Compile it by clicking on make.bat

(vii) Move the c:\myapp\DistilledWater folder to

to C:\sse\apache6\webapps\axis2\WEB-INF\services

Page 7 of 10

 Emulation of DistilledWater

 In a real implementation, the result is a complex parameter, including a message and

the amount ordered, defined via an XSD, validated/processed using the DOM API.

 Use emulation to test the orchestration logic: (i) emulate instances of complex I/O
parameters with a mnemonic string for each case; (ii) the orchestrator can distinguish
the resulting case by checking the substring if resp.contains(“…”).

Page 7 of 9

 Apache Ode (Orchestration Director Engine) is a BPEL3 engine.

Point the browser to http://localhost:8080/ode/ as a first test.

Click on Processes to see the available ones.

 Open the folder c:\myapp\HelloWorld2

 In the Apache ODE, business processes are written

with BPEL standard.

 Copy the c:\myapp\HelloWorld2 folder to

C:\sse\apache6\webapps\ode\WEB-INF\processes

The Tomcat console will show some deployment info

 Test the HelloWorld service on

http://localhost:8080/ode/processes

/helloWorld?wsdl

and

http://localhost:8080/ode/processes

/helloWorld?xsd

 The service takes an input string

(hello) and returns an output string

(helloResponse)

3 BPEL or WS-BPEL (Business Process Execution Language) is an XML standard to orchestrate web services.

Page 8 of 9

Open the .bpel file

 BPEL has three basic

components:

- Input/Output (WSDL)

- Data types (XSD)

- Programming logic (BPEL)

 Import the WSDL od XSD

 A PartnerLink is a web

service portType

 Variables declaration (programming)

 Message Exchange: receive

 Variable assignment (programming)

 XPath Expression (programming)

 Message exchange: reply

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html#_Toc164738506

http://www.w3schools.com/xpath/xpath_functions.asp

Page 9 of 9

 The service concatenates the string ‘ World’ to the input message. Modify the service:

(i) Remove the C:\sse\apache6\webapps\ode\WEB-INF\processes\HelloWorld2

folder. The Tomcat console will show some undeployment info

(ii) Replace the string ‘World’ with the string ‘Universe’ in

c:\myapp\HelloWorld2\ HelloWorld2.bpel

(iii) Copy the c:\myapp\HelloWorld2 folder to

C:\sse\apache6\webapps\ode\WEB-INF\processes

The Tomcat console will show some deployment info

 Create a sample request by using SoapUI.

