
Mario G.C.A. Cimino

Department of Information Engineering

Process-driven
Information Systems

University of Pisa

MSc in Computer Engineering

http://www.iet.unipi.it/m.cimino/wdis/

LECTURE 23

BP Management: Advanced Service Composition 2 of 24

 Let us consider a call center domain, where phone calls by customers
come in and call center agents serve these calls using an ERP and a CRM
software systems.

 In a call center environment, a customer calls to request certain
information. Using the phone number of the incoming call, the CRM
gets hold of the customer address, which is, in turn, fed to the ERP to
provide information on the customer.

 Another
service may
take a phone
number as
input and
provide the
address of
the phone
provider as
output.

BP Management: Advanced Service Composition 3 of 24

 Syntactically
S3 is equivalent
to S1 in terms of
input-output
data

 But
semantically
they returns
different data.

 This functional
difference is
visible in
semantic
specifications
only

BP Management: Advanced Service Composition 4 of 24

 The semantic information is used to decide the semantic match of the
two services, in the context of a given business process

BP Management: Advanced Service Composition 5 of 24

 Example: Knowledge-
intensive BP are centered
on data processed in the
context of a particular case

 Examples of case: a product
that is manufactured, the
evaluation of a job
application, the verdict of a
traffic violation, the
outcome of a tax
assessment, the ruling for
an insurance claim

 In traditional human
interaction workflow,
activities are statically
ordered. However, if data
constraints are
represented, the process
can behave more flexibly.

BP Management: Advanced Service Composition 6 of 24

 case models allow
more concurrency
between activities.

 E.g. the preparation
of the quote does not
require the address
information. Thus,
this activity can start
as soon as the enter
request activity has
provided the name
and the request
information

BP Management: Advanced Service Composition 7 of 24

 The execution behavior of case handling can be represented by an
event diagram.

 The case starts with an Enter Request activity. As soon as the name
and request data fields are provided, Prepare Quote can start. Send
Quote can start when the quote, including the price, is provided.

 The quote
can only be
sent after
the request
is entered,
i.e., after
the address
information
is available.

BP Management: Advanced Service Composition 8 of 24

 To define such temporal constraints: the activity definitions are
associated with data object definitions. The association is typically
partitioned into two types: mandatory and restricted.

 If data object is mandatory for an activity, the data value has to be
entered before that activity can be completed. However, it may also
be entered in an earlier activity.

 Instead, a restricted association indicates that a data value can only
be entered during a particular activity.

 Data objects may also be free, i.e., associated not with particular
activities but with the overall case. Hence, they can be accessed at
any time during the case execution.

Making processes executable on BPMS: Process variable 9 of 24

It follows a summary of aspects to make a process executable

 Process variables are managed by the BPMS engine to allow data
exchange between process elements. E.g. the purchase order in the
order fulfillment process, represents a process variable.

 The lifetime of a process variable is confined to the life of the
process instance in which the variable is created, and is only visible
to the process level in which it is defined and to all its sub-processes.
This means that a variable defined in a sub-process is not visible in
the parent process.

 We need to assign a data type to each process variable to allow BPMS
to interpret and manipulate these variables. In BPMN, the type of
each process variable is specified as an XSD (XML Schema definition)
type.

 The type of a variable can be simple or complex. Simple types are
strings, integers, doubles (numbers containing decimals), Booleans,
dates, times, etc. E.g. The object Stock availability can be
represented as a process variable of type integer (representing the
number of available units of a product).

Making processes executable on BPMS: Process variable 10 of 24

 Complex types
are hierarchical
compositions of
other types. A
complex type
can be used for
example to
represent a
business
document, such
as a purchase
order or an
invoice.

Making processes executable on BPMS: Task variable 11 of 24

 Internal variables of each task, called data inputs and data outputs in
BPMN, need to refer to an XSD type defining their structure. Differently
from process variables, they are only visible within the task (or sub-
process) in which they are defined.

 E.g. a data input for task “Check stock availability” in order to store the
content of the purchase order.

 The association between data objects and task data inputs/outputs is
defined via a data mapping In most cases, the BPMS will automatically
create all the tedious data mappings between data objects and tasks.

 BPMN relies on XPATH as the default language for expressing data
assignments, other languages can be used like Java Universal Expression
Language (UEL) or Groovy.

 E.g. Activiti BPM supports UEL, Bonita Open Solution and Camunda Fox
support Groovy while BizAgi’s BPM Suite supports its own expression
language.

Making processes executable on BPMS: Service Task 12 of 24

 A service task specifies how to communicate with the external
application that will execute the task. It is required is that the external
application provides a service interface that the service task can use.

 A service interface contains one or more service operations, each
describing a particular way of interacting with a given service. For
example, a service for retrieving inventory information provides two
operations: one to check the current stock levels and one to check the
stock forecast for a given product.

 An operation can either be in-out or in-only, thus expecting a
request/response message or request only. Each message of a service
operation needs to reference a message in the BPMN model, so that it
can be assigned an XSD data type.

 For each interface, a concrete implementation is defined: which
communication protocols are used b the service and where the service is
located in the network. By default, BPMN uses Web service technology
to implement service interfaces, and relies on SOAP/REST and WSDL to
specify this information.

…on BPMS: Send/Receive Tasks, Message/Signal Events 13 of 24

 They work similarly. A send task is a special case of the service task: it
sends a message to an external service using its data input, but there is
no response. A receive task waits for an incoming message and uses its
data output to store the message content.

 A receive task can be used to receive the response of an asynchronous
service which has previously been invoked with a send task. The
asynchronous service is provided by the consumer.

 Accordingly, in the send task the producer process acts as the service
requester sending a request message to the consumer. In the receive
task the roles get swapped: the producer acts as the service provider to
receive the response message from the consumer.

 This pattern is used for long-running interactions, where the response
may arrive after a while. The drawback of using a synchronous service
task in place of a send-receive is that this task would block the process
to wait for the response message.

 Message and signal events work exactly like send and receive tasks

… on BPMS: Script task and User task 14 of 24

 For script task, provide the snippet of code that will be executed by the
BPMS, in a programming language such as JavaScript or Groovy.

 The task data inputs store the parameters for invoking the script while
the data outputs store the results of script execution.

 For user task, specify the rules for assigning work items of this task to
process participants at runtime, the technology to communicate with
participants and the details of the user interface to use.

 Also, define data inputs to pass information to the participant, and data
outputs to receive the results. Process participants are member of a
resource class, e.g. sharing certain characteristics, holding the same
role or belonging to the same department or unit.

 Specify the implementation technology used to offer the work item to
the selected participant(s): (i) how to reach the participant (e.g. via
email or worklist notification), (ii) how to render the content of the task
data inputs on screen (e.g. via web forms organized through
screenflows), (iii) the strategy to assign the work item to a single
participant out of the assignment expression (e.g. assign it to the order
clerk with the shortest queue or randomly).

… on BPMS: Task, Event and Sequence Flow Expressions 15 of 24

 To write expressions for the attributes of tasks and events, and for the
sequence flows bearing conditions. E.g. in a loop task we need to write
a boolean expression implementing the condition “until response
approved”. For timer events. E.g. “Friday afternoon”. It can be
provided a temporal expression in the form of a precise date or time, a
relative duration, or a repeating interval.

 These expressions can be linked to data elements and instance
properties so as to be resolved dynamically at execution. For example,
we can set an order confirmation timeout based on the number of line
items in an order.

 To write a Boolean expression to capture the condition attached to each
sequence flow following an (X)OR-split. For example, condition “product
in stock” after the first XOR-split in the order fulfillment example can
be implemented as an XPATH expression.

 There is no need to assign an expression to a default sequence flow,
since this arc will be taken by the BPMS engine if the expressions
assigned to all other arcs emanating of the same (X)OR-split are false.

Making processes executable on BPMS: system binding 16 of 24

 The most BPMS-specific properties to configure in order to make a
process model executable are those of user tasks and those to link the
executable process with the enterprise systems (system binding).

 BPMSs offer a range of predefined service task extensions, called service
adapters or connectors: performing a database lookup, sending an email
notification, posting a message to Twitter or setting an event in Google
Calendar, reading or writing a file and adding a customer in a CRM
system.

 Each adapter comes with a list of parameters that we need to configure.
BPMSs provide wizards with capabilities to auto-discover some of the
parameter values. For instance, to use a database lookup we need to
provide the type of the database server (e.g. MySQL, Oracle DB) and the
server’s URL, the schema to be accessed, the SQL query to run and the
credentials of the user authorized to run the query.

 E.g. instead of implementing “Check stock availability” as a service
task, use a generic database lookup adapter if available. The task
“Notify unavailability to customer” and “Request shipping address” can
be implemented via email adapters, without dedicated email services.

Bonita BPM: Database and Web Service connectors 17 of 24

1. Create the diagram above (for detailed steps see the first tutorial):
2. New Diagram > complete the flow with the toolkit leaving the default task types.
3. Select Step1 > General Tab > Task type: Service.
4. Select Step2 > General Tab > Task type: Human.
5. Click on Save in the cool bar.
6. Create the process variables:
7. Select Pool > Data Tab > Process Variables: Add > Name: customer > Finish &

Add > Name: deposit > Finish
8. Create the pool form
9. Select Pool > Tab Execution > Instantiation form > 6.x
10.Tab 6.x Application > Add > Select Tab Process variables > Select deposit, and

mandatory > Finish
11.Create the Step2 form
12.Select Step2 > Tab Execution > form > 6.x
13.Tab 6.x Application > Add > Select Tab Process variables > Select customer, and

read only > Finish

Bonita BPM: Database connector 18 of 24

14.Create the MySQL Database:
15.1st method: import the file bank-dump.sql into a MySQL server.
16.2nd method: download the file www.iet.unipi.it/m.cimino/wdis/res/dbms.zip and

extract it on C:\wdis. Finally, click on C:\wdis\mysqlStart
17.Access the Database with MySQL client:
18.Click on C:\wdis\mysqlClient6.1 > Click on the “+” icon close to MySQL

connections > enter a name and click OK.
19.Select the bank schema > Tables >

account > right click > Select rows.
20.Create the DB Connector:
21.On Bonita, select Step1 > Tab

Execution > Connectors out (*) >
Add > Categories: Database >
Others > Connector definition >
MySQL 5.5 JDBC 4… > Next

22.Name: dbconn1 > Next. Enter
URL: jdbc:mysql://localhost:3306/bank
Username: root Password:
Next

(*) Connectors out are carried out at the end of
the step, whereas Connectors in at the begin
of the process.

Bonita BPM: Database connector 19 of 24

23.Enter the query
24.SELECT * FROM account WHERE deposit > ${deposit};

(for autocompletion of variables press CTRL + SPACE)
23.Select Next > Scripting Mode > Next > Select target: customer
24.Click on the pencil icon to open the Groovy editor.

Bonita BPM: Database connector 20 of 24

28.Expression type: Script
29. In the text area enter
if (resultset.next())
return resultset.getString("customer");
else
return "none";

28.Click on OK > Finish.
29.Click on Start button in the coolbar
30.The Bonita launches the browser
31.Enter a deposit and SUBMIT
32.At Step 2, a customer with more

than the deposit will be shown

Bonita BPM: Web Service connector 21 of 24

1. Remove the DB connector
2. Select Step1 > Tab Execution > Connectors out > Remove
3. Remove the Process Variables
4. Select Pool > Tab Data > Process variables > select customer > Remove > OK,

select deposit > Remove > OK.
5. Add the process variable from, to, rate
6. Add > Name: from > Finish&Add > Name: to > Finish & Add > Name: rate > Finish
7. Update the Pool form
8. Select Pool > 6.x Application > Pageflow > Select Pool > Remove. Add > Process

variables > Select from and to. Press Finish.
9. Update the Step2 form
10.Select Step2 > 6.x Application

> Pageflow > Select Step2 >
Remove. Add > Process
variables > Select rate > Finish

11.Add the WS connector
12.Select Step1 > Execution >

Connectors out > Add.
13.Categories: SOAP WebService

> Web Service Soap1.2 >
Choose the NAME > conn2 >
Next

Bonita BPM: Web Service connector 22 of 24

45.Name: wsconn2 > Next > Enter parameters *
Service NS: http://www.webserviceX.NET/
Name: CurrencyConvertor
Press Next
Port Name: CurrencyConvertorSoap12
EndPoint: http://www.webservicex.net/CurrencyConvertor.asmx
Binding: http://www.w3.org/2003/05/soap/bindings/HTTP/
Envelope:

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:web="http://www.webserviceX.NET/">

<env:Body>
<web:ConversionRate>

<web:FromCurrency>${from}</web:FromCurrency>
<web:ToCurrency>${to}</web:ToCurrency>

</web:ConversionRate>
</env:Body>

</env:Envelope>

46.Next > Next > Returns body > Next > Output operations:
(Ctrl + shift to find parameters values)

(*) Parameters are extracted by WSDL file www.webservicex.net/CurrencyConvertor.asmx?wsdl

and by using a SOAP client software, e.g. SoapUI. This part is not covered. As an example
some example of request and response is provided at the end of this tutorial.

Bonita BPM: Web Service connector 23 of 24

47.Next > Next > Returns body > Next > Output operations:

48. Select rate on the left. Click on the pencil icon on the right. Edit Expression:
Script. In the text area (Ctrl + shift to select parameters values if needed):

import org.w3c.dom.*;
responseDocumentBody.normalizeDocument();
nodeList nl =
responseDocumentBody.getElementsByTagName("ConversionRateResult");
Element el = (Element) nl.item(0);
return el.getTextContent();

Bonita BPM: Web Service connector 24 of 24

Examples of XML request/response messages provided by SoapUI:

49.Click on Start button in the coolbar
50.The Bonita launches the browser
51.Enter from and to and SUBMIT
52.At Step 2, the conversion rate will be

shown
53.Note: The WS may reply with “-1”

when the WS is not available (this is
frequent for free WS)

