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The Doppler Shift-Sinusoidal waveform

If the radar and target are not at rest with respect to one another, the 
frequency fR of the received echo will differ from the transmitted frequency
f0 due to the Doppler effect. A correct description of the Doppler shift for 
the electromagnetic waves requires the theory of special relativity.

Consider a monostatic radar that is not moving and suppose that the 
target is moving with a radial velocity v toward the radar. The relativity 
theory predict that, for a sinusoid of infinite duration and a constant 
velocity v, the received frequency will be:
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An approaching target causes an increase in the received frequency, a 
receding target a decrease. 



The Doppler Shift

Previous equation can be simplified without loss of precision because 
the velocity of actual targets is a small fraction of c. For example, the 
value of v/c for a supersonic aircraft traveling at Mach 2 (about 660 m/s) is 
only 2.2e-6. Then expanding the denominator of the equation:
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Discarding all second-order and higher terms in v/c we get
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The difference fD between the transmitted and received frequencies is 
called the Doppler frequency or Doppler shift. For an approaching target 
it is:

02 2D

v v
f f

c λ
= =



Example 1: An airplane moving at Mach 1 along the antenna boresight of a 
10 GHz radar creates a Doppler shift of 22.87 kHz.
Example 2: The SCR-270 radar in use at Pearl Harbor during the Japanese attack 
on December 7, 1941, operated at 106 MHz and an A6M Zero attack aircraft had a 
diving speed of around 400 mi/hr. That corresponds to a Doppler shift of a mere 
633 Hz.
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The Doppler Shift



The Doppler Shift-Arbitrary waveform

Let’s now generalize the Doppler shift formula for arbitrary motion 
between the radar and the target and for any waveform using a classical 
physics approach. 

The radar echo from a moving target with varying time delay τ(t) can we 
written as (ignoring amplitude scale factors) 

[ ]( ) ( )y t x t tτ= −

For example, suppose that the signal x(t) is a simple pulse of the form

then
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The Doppler Shift-Arbitrary waveform

A point on waveform y(t) received at time t was transmitted at [t-τ(t)]; 
this point was incident on the target at time [t-τ(t)/2], at which time the 
target range was R[t-τ(t)/2]. The round-trip distance traveled by this point 
on the waveform is 2R[t-τ(t)/2]; this distance, from the definition of τ(t), is 
also equal to cτ(t); that is (receding target)

[ ] [ ]0

0

2 ( ) / 2 ( ) ( ) / 2 ( ) / 2

2 / 2 /
( )

1 / 1 /

R t t c t R v t t c t

R c vt c
t

v c v c

τ τ τ τ

τ

− = ⇒ + − =

⇒ = +
+ +

( ) ( )

0 0
0

' '
0 0 0

2 / 2 /
( ) Re exp 2

1 / 1 /

Re exp 2

R c R cc v c v
y t s t j f t

c v v c c v v c

c v c v
s t j f t

c v c v

π

τ π τ

     − −    = − −       + + + +         

    − −   = − −       + +       

' 0
0

2 /

1 /

R c

v c
τ =

−



The Doppler Shift-Arbitrary waveform
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Stretching or compression 
factor, depending on the 
sign of v. For narrow-band 
signals this effect is 
negligible.

For many applications 
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The Doppler Shift-Arbitrary waveform

Now let’s consider only the complex envelope of the target signal and 
sample it at time t=nT+τ0. The sampled echo is
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To measure the Doppler shift 
using multiple pulses, a deterministic 
phase relationship from pulse to 
pulse must be maintained over the 
CPI so that phase shifts measured 
by the coherent radar are due to 
relative radar-target motion only. In 
this figure two pulse pairs are shown, 
one coherent and one not.



Swerling target models

Each Swerling model is a combination of a probability density function 
and a decorrelation time for the target RCS. They are formed from the 
four combinations of two choices for the pdf and two for the decorrelation 
time.

Swerling considered two extreme cases for the correlation properties of 
this block of N measurement of the RCS. The first assumes they are all 
perfectly correlated, so that all N pulses collected on one sweep have the 
same value. The N new pulses collected on the next antenna sweep all 
have the same value as one another also, but their value is independent 
of the value measured on the first sweep. This case is referred to as 
scan-to-scan decorrelation.

The second case assumes that each individual pulse on each sweep 
results in an independent value for the RCS. This case is referred to as 
pulse-to-pulse decorrelation.



Swerling target models

The model called Swerling I assumes that the amplitude of an entire 
pulse train is a single random variable with a Rayleigh pdf. In addition the 
initial phase of each pulse is assumed to be the same and statistically 
independent random variable with a uniform pdf.

Swerling II differs from Swerling I in that the amplitude of each pulse 
in the train is a statistically independent random variable, with the 
same Rayleigh pdf. The phases of each pulse in the train are assumed to 
be independent with uniform probability
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Swerling target models

Swerling III is similar to Swerling I in that each pulse in the train has the
same amplitude. In the Swerling III model, however, pulse-train amplitude 
is assumed to be a random variable with a one-dominant-plus-Rayleigh
pdf function given by
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Swerling IV is similar to Swerling II, however, pulse-train amplitude is 
assumed to be a random variable with a one-dominant-plus-Rayleigh
pdf.
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