Corning® Titan® Single-Mode Optical Fiber

GENERAL

Corning® Titan® single-mode optical fiber is designed to meet increasingly demanding requirements for improved toughness. Titan fiber is more abrasion-resistant than other fibers, reducing the likelihood that the fiber can be damaged during routine handling and installation. Titan fiber also has improved fatigue resistance, so that the fiber better retains its strength over time.

This product is suitable for applications requiring single-mode fiber, including telephony, cable television, submarine and private network applications in the transmission of voice, data and/or video services.

Titan fiber features a titania-doped outer cladding that improves the abrasion and fatigue resistance of the fiber. Titan fiber's enhanced glass composition provides performance not possible with coating solutions, because the added performance doesn't get stripped off during splicing and termination.

Titan fiber is optimized for use in the 1310 nm wavelength region. With low dispersion in this operating window, fiber information-carrying capacity is at its highest. Titan fiber also can be used effectively in the 1550 nm wavelength region.

Corning fiber is protected for long-term performance and reliability by the CPC coating system. Corning's enhanced, dual acrylate CPC coatings provide excellent fiber protection and are easy to work with. CPC coatings are designed to be mechanically stripped and have an outside diameter of 245 µm. CPC coatings are optimized for use in many single and multi-fiber cable designs including loose tube, ribbon, slotted core and tight buffer cables.

Titan fiber is manufactured using the Outside Vapor Deposition (OVD) process, which produces a totally synthetic, ultra-pure fiber. As a result, Corning Titan fiber has consistent geometric properties, high strength and low attenuation. Corning Titan fiber can be counted on to deliver excellent performance and high reliability, reel after reel.

FEATURES & BENEFITS

- Improved abrasion and fatigue performance for long-term reliability.
- Versatility in 1310 nm and 1550 nm applications.
- Outstanding geometrical properties for low splice loss and high splice yields.
- OVD manufacturing reliability and product consistency.
- Optimized for use in loose tube, ribbon and other common cable designs.

OPTICAL SPECIFICATIONS

• Attenuation

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Premium*</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1310</td>
<td>≤0.35</td>
<td>≤0.40</td>
</tr>
<tr>
<td>1550</td>
<td>≤0.25</td>
<td>≤0.30</td>
</tr>
</tbody>
</table>

* Lower attenuation available in limited quantities.

Point Discontinuity

No point discontinuity greater than 0.10 dB at either 1310 nm or 1550 nm.

Attenuation at the Water Peak

The attenuation at 1383±3 nm shall not exceed 2.1 dB/km.
OPTICAL SPECIFICATIONS, (continued)

Dispersion Calculation

\[
\text{Dispersion} = D(\lambda) = \frac{S_0}{4} \left(\frac{\lambda^4}{\lambda_0^4} - 1 \right) \text{ps/(nm}^2\text{km)}, \quad \text{for } 1200 \text{ nm} \leq \lambda \leq 1600 \text{ nm} \quad \lambda = \text{Operating Wavelength}
\]

Attenuation vs Wavelength

<table>
<thead>
<tr>
<th>Range (nm)</th>
<th>Ref. (\lambda) (nm)</th>
<th>Max Increase (\alpha) (dB/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1285 - 1330</td>
<td>1310</td>
<td>0.05</td>
</tr>
<tr>
<td>1525 - 1575</td>
<td>1550</td>
<td>0.05</td>
</tr>
</tbody>
</table>

The attenuation in a given wavelength range does not exceed the attenuation of the reference wavelength \(\lambda\) by more than the value \(\alpha\).

Attenuation With Bending

<table>
<thead>
<tr>
<th>Mandrel Diameter (mm)</th>
<th>Number of Turns</th>
<th>Wavelength (nm)</th>
<th>Induced Attenuation (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>1</td>
<td>1550</td>
<td>(\leq 0.50)</td>
</tr>
<tr>
<td>75</td>
<td>100</td>
<td>1310</td>
<td>(\leq 0.05)</td>
</tr>
<tr>
<td>75</td>
<td>100</td>
<td>1550</td>
<td>(\leq 0.10)</td>
</tr>
</tbody>
</table>

The induced attenuation due to fiber wrapped around a mandrel of a specified diameter.

• **Cable Cutoff Wavelength** \(\lambda_{ccf}\)
 \(\lambda_{ccf} < 1260 \text{ nm}\)

• **Dispersion**
 Zero Dispersion Wavelength \(\lambda_o\): \(1301.5 \text{ nm} \leq \lambda_o \leq 1321.5 \text{ nm}\)
 Zero Dispersion Slope \(S_o\): \(\leq 0.092 \text{ ps/(nm}^2\text{km)}\)
 Fiber Polarization Mode Dispersion Coefficient (PMD): \(\leq 0.5 \text{ ps/\text{km}}\)

• **Mode-Field Diameter**

 \[9.30 \pm 0.50 \mu \text{m at } 1310 \text{ nm}\]
 \[10.50 \pm 1.00 \mu \text{m at } 1550 \text{ nm}\]

ENVIRONMENTAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Environmental Test Condition</th>
<th>Induced Attenuation (dB/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1310 nm</td>
</tr>
<tr>
<td>Temperature Dependence -60°C to +85°C*</td>
<td>(\leq 0.05)</td>
</tr>
<tr>
<td>Temperature-Humidity Cycling -10°C to +85°C*, up to 98% RH</td>
<td>(\leq 0.05)</td>
</tr>
<tr>
<td>Water Immersion, 23°C</td>
<td>(\leq 0.05)</td>
</tr>
<tr>
<td>Heat Aging, 85°C</td>
<td>(\leq 0.05)</td>
</tr>
</tbody>
</table>

*Reference temperature = +23°C
DIMENSIONAL SPECIFICATIONS

Standard Length (km/reel): 2.2 - 25.2*
 * Longer lengths available at a premium.

Glass Geometry
 Fiber Curl: ≥4.0 m radius of curvature
 Cladding Diameter: 125.0 ± 1.0 µm
 Core-Clad Concentricity: ≤0.6 µm
 Cladding Non-Circularity: ≤1.0%

\[
\text{Defined as: } \left[1 - \frac{\text{Min. Cladding Diameter}}{\text{Max. Cladding Diameter}} \right] \times 100
\]

Coating Geometry
 Coating Diameter: 245 ± 10 µm
 Coating-Cladding Concentricity < 12 µm

MECHANICAL SPECIFICATIONS

Proof Test:
The entire length of fiber is subjected to a tensile proof stress ≥ 100 kpsi (0.7 GN/m²)*.
 * Higher proof test levels available at a premium.

PERFORMANCE CHARACTERIZATIONS

Characterized parameters are typical values.

Core Diameter:
 8.3 µm

Numerical Aperture:
 0.13
 NA was measured at the one percent power angle of a one-dimensional far-field scan at 1310 nm.

Zero Dispersion Wavelength (\(\lambda_o\)):
 1312 nm

Zero Dispersion Slope (\(S_o\)):
 0.090 ps/(nm²•km)

Refractive Index Difference:
 0.36%

Effective Group Index of Refraction (\(N_{\text{eff}}\)):
 1.4675 at 1310 nm
 1.4681 at 1550 nm

Fatigue Resistance Parameter (\(n_d\)):
 ≥25
Refractive Index Profile (typical fiber)

![Graph of refractive index profile with typical fiber data.]

Spectral Attenuation (typical fiber)

![Graph of spectral attenuation with typical fiber data.]

Ordering Information

To order Corning® Titan® optical fiber, contact your sales representative, or call the Telecommunications Products Division Customer Service Department at **910-395-7659** (in North America) and **607-974-7174** (outside of North America). Please specify the following parameters when ordering.

Fiber Type: Corning® Titan® single-mode fiber

Coating: 245 µm outside diameter

Fiber Attenuation Cell: dB/km

Fiber Quantity: km

Other: (Requested ship date, etc.)

CORNING

Corning Incorporated
Telecommunications Products Division
Corning, NY 14831 USA
Tel: (910) 395-7659 (in North America)
Tel: (910) 395-7789 (in North America)
Tel: (607) 974-7174 (outside of North America)
Fax: (910) 974-7286 (in North America)
Fax: (607) 974-7041 (outside of North America)
Email: fiber@corning.com
Internet: www.corningfiber.com

Corning Fiber is Made in the USA.