
Origine della variabilità R-R

La variabilità nel tempo dell'intervallo R-R dipende da diverse cause:

- modifica dell'attività respiratoria e dei processi metabolici
- attività fisica, e recupero
- postura e modifiche posturali
- reazioni emotive, stress
- effetti mediati dal sistema nervoso autonomo e centrale (simpatico/parasimpatico)

L'analisi della variabilità della FC è in grado di discriminare e identificare le diverse sorgenti che sono causa della variabilità.

Modello fisiologico

- E' possibile costruire un modello, cioè una funzione matematica, in cui il segnale FC (input) viene "tradotto" in altri segnali correlati a specifiche funzioni del nostro organismo (output).
 - L'accuratezza di questo modello, sia a riposo che durante esercizio, è confrontabile o migliore dei risultati ottenuti dalla gas-analisi.

Funzioni ottenibili:

- respiro
- consumo di ossigeno (VO₂)
- consumo energetico
- consumo di grassi
- fatigue and accumulated exercise load (EPOC), recovery requirements

Calcolo del Consumo di Ossigeno (VO₂)

Il VO₂ viene considerato come il parametro più affidabile per valutare l'attività aerobica.

Solitamente la misura diretta del massimo consumo di ossigeno (VO₂ max) viene fatta in laboratorio utilizzando un metabolimetro per l'analisi degli scambi gassosi (VO₂ e VCO₂) durante test da sforzo su tapis roulant.

La procedura richiede molto tempo, è costosa e non è applicabile sul campo.

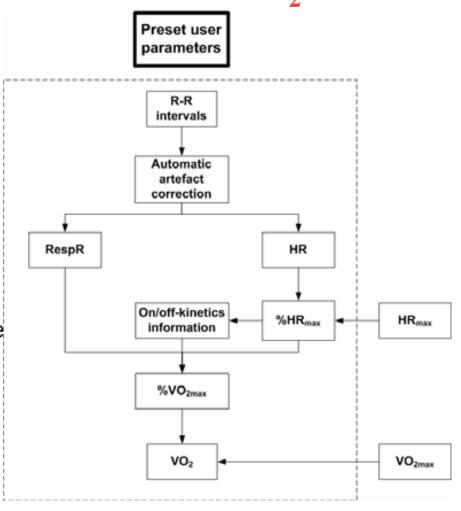
Il VO₂ può essere stimato indirettamente in base alla frequenza cardiaca, alla frequenza respiratoria estratta dall'R-R ed all'informazione sulla risposta ON/OFF (esercizio/riposo) estratta sempre dai battiti cardiaci.

UNIPI - La frequenza cardiaca e la sua variabilità

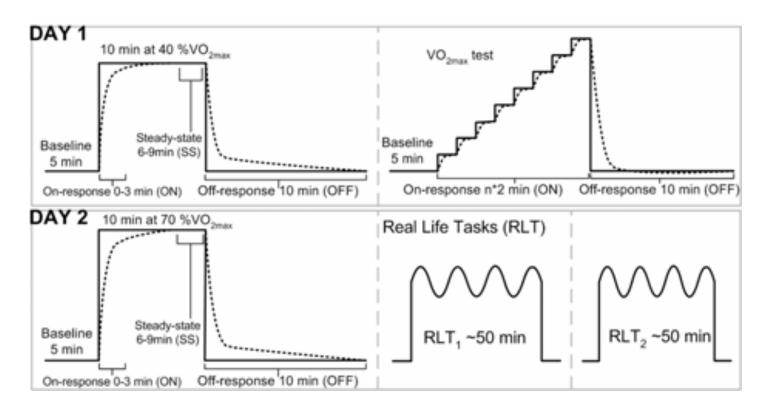
Relazione tra VO₂ e frequenza cardiaca

Il metodo basato sul calcolo indiretto del VO₂ dalla frequenza cardiaca è ampiamente documentato e validato in letteratura.

Ci sono tuttavia diversi fattori che devono essere considerati:


- fa riferimento a condizioni stazionarie, cioè non si tiene conto della dinamica dei diversi rapporti tra FC e VO₂ nelle diverse condizioni di esercizio
- necessita di una calibrazione in laboratorio
- non è accurato quando la FC è bassa
- non distingue tra aumenti non-metabolici e metabolici della FC (per es. durante stress non fisici o mentali)

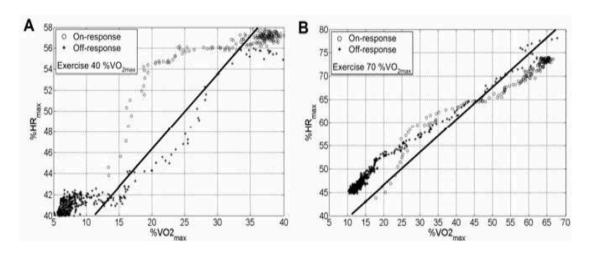
Questo implica la necessità di migliorare il metodo tenendo conto che non esiste solo una relazione diretta tra VO₂ e FC ma che la FC viene influenzata anche da altre cause.


Complessità della relazione VO₂ e FC

Per costruire una stima più accurata del VO₂ è necessario aggiungere ulteriori informazioni al modello.

Per esempio, sono state impiegate tecniche basate sulle reti neurali (neural networks) per costruire un nuovo modello basato non solo su VO₂ e FC ma anche sulla frequenza respiratoria e su informazioni della cinetica ON/OFF.

Validazione Modello

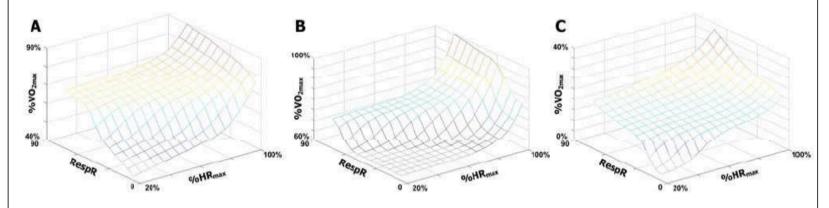


HR data was collected with an RR-recorder (Polar Electro Ltd., Kempele, Finland). During bicycle ergometer exercises, VO2 data was collected breathby- breath by using a Vmax analyzer (Sensor Medics, California, Palo Alto, USA), and during RLTs, by using a portable Cosmed K4 analyzer (S.r.I, Italy), both of which were calibrated before and after each exercise.

Considerazioni sul modello

E' stato notato che la frequenza respiratoria (FR) e VO₂ risultano fortemente correlate (Pulkkinen et al.2003), e quindi la FR consente di distinguere tra cambiamenti metabolici o non-metabolici sulla frequenza cardiaca .

Inoltre le differenze nel rapporto FC-VO₂ durante le diverse fasi di esercizio consiglia di usare queste informazioni per ridurre l'errore dovuto all'impiego di semplici equazioni lineari .



Cinetica on/off della frequenza cardiaca e VO₂ durante la transizione da/per 40% (A), 70% (B) VO₂max durante esercizi con cicloergometro

Identificazione della dinamica ON/OFF

Anche l'identificazione della dinamica ON/OFF viene ottenuta dai dati della FC.

Il suo gradiente è proporzionale alla dinamica, per esempio valori positivi (ON) durante l'aumento di intensità dell'esercizio, valori negativi (OFF) durante il recupero ed un livello zero durante l'esercizio in condizioni stazionarie.

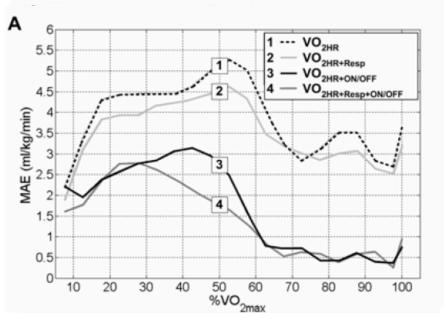
%VO₂max in funzione della FR e %FCmax durante le tre tipiche fasi dell'esercizio: A) stato stazionario, B) risposta ON e C) risposta OFF.

Contributo della frequenza respiratoria

L'uso delle informazioni sulla frequenza respiratoria e sulla dinamica ON/OFF migliora notevolmente la stima della misura VO₂.

Da notare che questo risultato viene ottenuto impiegando solo la sequenza di dati R-R, quindi il metodo si presta ad essere impiegato per misure sul campo.

In particolare, il contributo positivo della frequenza respiratoria deriva dalle seguenti considerazioni:


- la FR è strettamente correlata a VO₂,
- duranti i cambi di postura, ci sono solamente piccole variazioni in VO₂ e FR, ma variazioni più rilevanti nella FC.
- la FR è in grado di caratterizzare gli aumenti della FC nonmetabolici (per es. stress non-fisici o mentali) e metabolici (attività fisica)

Contributo dell'informazione ON/OFF

Il miglioramento della stima della misura VO₂ dovuto alla presenta dell'informazione sulla dinamica ON/OFF deriva in particolare da alcuni fattori:

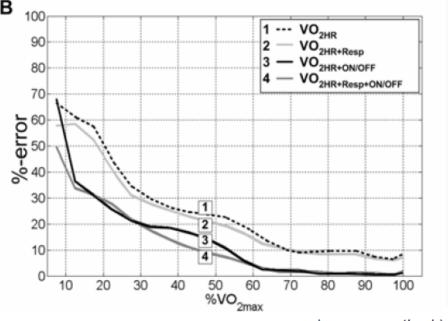
- corregge l'inconsistenza del rapporto FC-VO₂ durante le variazioni dinamiche di intensità dell'esercizio
- corregge la sovrastima di VO₂ durante il recupero, quando la FC rimane elevata
- prende in considerazione e riduce l'errore causato dai diversi rapporti tra FC e VO₂ durante l'esercizio.

La figura mostra gli errori della stima VO₂ ottenuta da metodi diversi.

MAE: Mean Absolute Error= media(|valore vero - stima|)

Contributo dell'informazione ON/OFF

Il miglioramento della stima della misura VO₂ dovuto alla presenta dell'informazione sulla dinamica ON/OFF deriva in particolare da alcuni fattori:


corregge l'inconsistenza del rapporto FC-VO₂ durante le variazioni

dinamiche di intensità dell'esercizio

 corregge la sovrastima di VO₂ durante il recupero, quando la FC rimane elevata

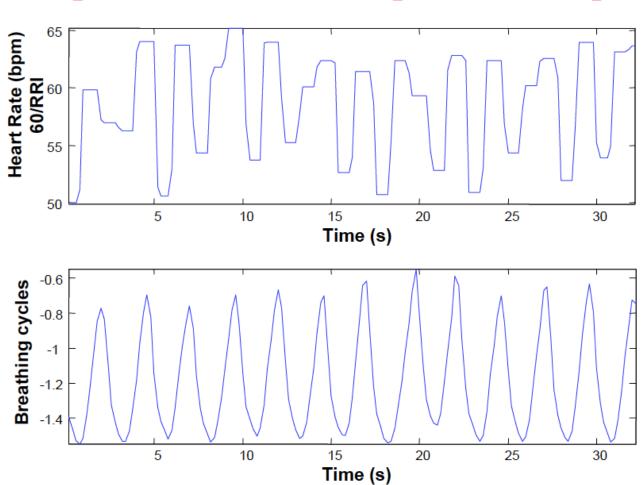
 prende in considerazione e riduce l'errore causato dai diversi rapporti tra FC e VO₂ durante l'esercizio.

La figura mostra gli errori della stima VO₂ ottenuta da metodi diversi.

ore vero - stima)

Consumo di ossigeno

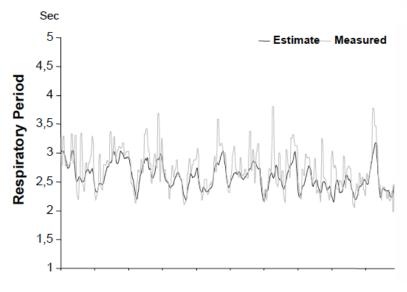
Valore VO₂ vero confrontato con quello stimato dal metodo Firstbeat, durante un test a massimo carico seguito da recupero:

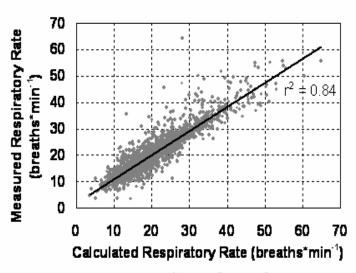


Limitazioni

The VO2 estimation method presented above has certain limitations when compared to laboratory measurements measuring VO2 directly. It is important to note that the method is not suitable, as such, for direct estimation of maximal oxygen uptake (VO2max).

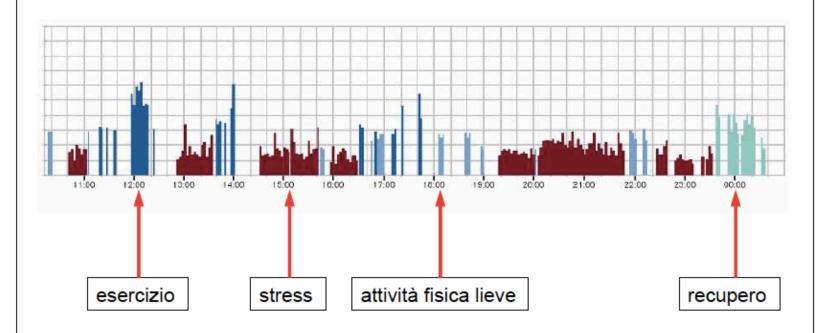
The accuracy of the method is dependent on the accuracy of personal background parameters, and therefore, measuring the true personal maximal heart rate and maximal oxygen uptake increases the accuracy of the estimation.




Il segnale respiratorio dalla sequenza R-R

La frequenza respiratoria, o il periodo del ciclo respiratorio, può essere ottenuta partendo dalla serie di intervalli R-R estratti dal segnale elettrocardiografico.

La figura di sinistra mostra: il segnale vero della durata dei cicli respiratori (in nero) e la durata stimata dalla serie R-R (in grigio).


La figura di destra mette a confronto la frequenza respiratoria vera (asse y) e la frequenza stimata dagli R-R (asse x). In questo caso, l'errore assoluto medio è stato di +/-1.3 cicli x minuto in tutte le condizioni di esercizio.



UNIPI - La frequenza cardiaca e la sua variabilità

Riconoscimento degli stati fisiologici dalla HRV

riassumendo... l'intervallo tra battiti cardiaci non è costante variabilità causata da diverse sorgenti effetti mediati dal Sist. Nervoso Autonomo la funzione cardiaca è controllata dal SNA usando l'analisi della HRV, le diverse sorgenti di variabilità possono essere individuate stress riposo esercizio leggera attività fisica recupero dopo esercizio UNIPI - La frequenza cardiaca e la sua variabilità