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» Maxwell’s equations

-Time domain
* Differential form
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-Boundary conditions



Introduction ()

James Clerk Maxwell
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» James Clerk Maxwell (1831-1879) was a Scottish physicist and
mathematician.

» His most prominent achievement was formulating
classical electromagnetic theory. This united all previously unrelated
observations, experiments and equations of electricity, magnetism and
even optics into a consistent theory.

» Maxwell's equations demonstrated that electricity, magnetism and
even light are all manifestations of the same phenomenon, namely
the electromagnetic field.

» Subsequently, all other classic laws or equations of these disciplines
became simplified cases of Maxwell's equations.

» Maxwell's achievements concerning electromagnetism have been
called the "second great unification in physics® after the first one
realized by Isaac Newton.



Introduction (ll)

» Maxwell’s equations are a set of four partial differential equations in four
variables that fully describe the classical electromagnetic interaction.

» Maxwell's equations describe how electric charges and electric currents act
as sources for the electric and magnetic fields. Further, they describe how a
time varying electric field generates a time varying magnetic field and vice
versa.

» Two of Maxwell's equations -Gauss's law and Gauss's law for magnetism-
describe how the fields emanate from charges. (For the magnetic field there is
no magnetic charge and therefore magnetic fields lines neither begin nor end

anywhere.)

» The other two Maxwell's equations describe how the fields “circulate” around
their respective sources. In Ampére's law the magnetic field “circulates” around
time varying electric fields. In Faraday's law the electric field “circulates” around
time varying magnetic fields.
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Maxwell’s Equations - Differential form (l)

v xe(r, 1) =—§9<Lt)

V xh(r,t) = %g(g,t) i)

e(r,t)- electric field [V/m]

h(r,t)- magnetic field [A/m]

b(r,t)- magnetic induction field [Tesla/m? or Wh/m?]
d(r,t)- electric induction field [C/m?]

p(r,t)- charge density [C/m?3]

j(r,t)- current density [A/m?]
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Maxwell’s Equations - Differential form (ll)

I Maxwell’s equations are not independent equations.

vXe=—§9<L,t) & V-b(r,t)=0

V. (Vxe) =—V-[§b(m)}
V-(Vxa)=0

—>v. 2 e a(v-b)zo
ot ot

|

constant in time

t <ty bt<t,)=0 —> V-b=0 WVt
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Maxwell’s Equations - Differential form (lll)

Maxwell’s equations (2 and 3) are related through the continuity equation:

Vxh(r.1 =§g(z,t>+ D & V-d(rt) = p(r.t)

v-[Van,t)]=v-§g(m)+v it

V-(Vxa)=0

: 0
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V- j+—p=0

@v-%g(g,t)w-iq,t):o

Continuity equation
(generalization of Kirchhoff’s law)




Maxwell’s Equations - Integral form

0 0 .
Vxe= —ab(Lt) & Vxh(r,t) —EQ(Lt)Jq(Lt)

'jsjvxg.indsz_gg_g;nds
j Vxh-i dS =”%—%-1nd8+”i-inds
S

S S
[vxA-i,ds \‘ —

displacement current

Stokes’ Theorem: mA. dl =
L

[ﬁg-il -dl = —éjjb'inds Maxwell-Faraday law
f ot

—>

[ﬁh-',-dl:éﬁg-indsﬂ'jj-inds Generalization of
L ot s s

Ampere’s circuital law
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Maxwell’s Equations Integral form — Gauss’s law

v-d(r,t)=p(r,t) & V-b(r,t)=0

@& oo
[ v-b-av =0 =
Gauss Theorem: ﬂA.indS :J.HV-AGIV

—\d(r.t)
II.'//F—* \\|

= [g[ Q . ! n ds :Jﬂ\_[j P dVv Gauss’s law \»'_:1
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Maxwell’s Equations Integral form — Charge conservation

Continuity equation

. O
V- ]+—p=0
1757

: B op
J-\.‘;,“ (V-i)dv —_J‘\‘[-[Edv m’_ JI 4s _EJ‘J‘J‘ dv Charge conservation
= Sl oty o

(generalization of
Kirchhoff’s law)

A-indS:j”V-AdV
V

S
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Maxwell’s Equations Integral form — Ampre’s law

[ﬁh!
()

:_Hg _ndS—I—”j i,dS
IEGRRE

i(t) = fﬂ j(r,t)-i dS

—>

i(t)=[h-id

Vxh(r,t) = J(r,1)

V- (Vxa)=0
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— [fih-id =—¢(t)+u(t)

for static fields: — @(t) =0
or static rields at¢()

Ampere’s law (inconsistent for dynamic fields)

=V j(r,t) =0=> [[]v-jav =[f] i(r.t)-i,ds =0

_ o)
but, 1(t) = [ﬂf j(r,t)-1,dS = ~
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Maxwell’s Equations - Integral form (V)

L

L

Vxh(r,t) = j(r,t)

ih(r,t)-idl =[] j(r,t)-i,ds =i(t)

S1

Jiher,t)-idi =] j(r,t)-i,ds =0

S

I:> Ampere’s law gives different results depending on the surface choice!

Including the second Maxwell’s equation in the Ampere’s law :

Sy

Jih(r.1)-idi =

[ i(r.t)-i,ds =i(t)
¢ 0d

ih(r,)-idl =
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S

—-1.dS #0
ot -

Ampere’s generalized law

—

fince.0-ia =§jsjg-inds+£j_j-inds
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Maxwell’s Equations - Integral form (VI)

(The induced electromotive force (EMF) in any closed

MaxweII-Faraday law circuit is equal to the time rate of change of the magnetic
flux through the circuit.)
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Gneralized
Ampere’s law

(It relates magnetic fields to electric currents
that produce them. Using Ampere's law, one
can determine the magnetic field associated
with a given current or current associated
with a given magnetic field, providing there is
no time changing electric field present.)

Gauss’s law (The electric flux through any closed surface is proportional to the

enclosed electric charge.)

Gauss’s law for magnetism (it states that magnetic charges do not exist.)
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Continuity equation

(The net current through a volume must
necessarily equal the net change in charge within
the volume.)
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Maxwell’s Equations — Frequency Domain

Maxwell’s equations in frequency domain are formally obtained from Maxwell’s equation in
time domain by replacing the differential operator 0/ ot with jo

Differential form:

(v xe(r,b) =—§Q(Lt)\

Vxh(rt) = %g(w + ()

Integral
orm:

V-b(r,)=0

\Vj(rt)+atp(rt) 0/

vdrt)=prt) |=

(" UxEC@)=—jeB(re) )

VxH(r,w)= joD(r,m)+J(r, o)

\% Q(L’ C()) = p([! C())

VE(LC‘)) =0
\_ V-J(r, @) + Jop(r, 0) =0 )

=

>
o
p)
Il
D—
—
i
o
<

\_

=——H@ \ 4
JH-

qjgn_ 1= jof[B 05 )
i, - Ja)”D |dS+”J -1.dS

[E[ i .dS =jvjjpdv
[[B-i,ds =0

LgJ_s-i_ndS =—ijJIpdV14/




Boundary conditions (I)

medium?2

Considerations: < | and & are small enough.

surface current

~ surface current

- surface current
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-

(i,xe,)=(i,xe)
(i (i,xh,)

Ix1, =1,
[ﬁg-[l di =—§“‘Q-|nd8
-L)I+<z-(—u>)l=—§<I5a>—§<w@2>

xe,)

=1,- (L, xe,)=i.

), = (&)

0 : .. . : .
= agg.!nds + .[IJ-!ndS (and the same considerations):

(i,xe)

—~
| D

. »  Boundary conditions for the tangential electric
and tangential magnetic field

The tangential electric field component is continuous, while
the tangential magnetic field component is discontinuous if
the surface current is non zero ( o — o PEC),

while it is continuous if the surface current is zero.
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Boundary conditions (Il)

Considerations:

| and 6 are small enough to consider

[ﬂp-gnds =0
S

medium1

AS-

If5 & AS are small enough=>b, -i AS —b, - AS =0 =| b, -i, =b, -i, [*Boundary conditions for the
=2 = =1 = normal component of magnetic

induction
For the third Maxwell equation [ﬂ“ g.indS :H“- pdV we assume no electrical surface currents density:
S Vv
>(d, -1 =d, -1 —Boundary conditions for the normal

component of electric induction

If | 3 surface current |=]i -(d,—d,)=1im pd = p,

50

If o— the normal component of the electric induction is
discontinuous.

The boundary conditions are also valid in frequency domain — vectors can be replaced by the corresponding phasors.
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