Distance enlargent against IEE802.15.4a distance bounding

- Mafia fraud is an attack against a generic authentication protocol
- A verifier (V) checks for the identity of a prover (P) and then opens a door (access control)
- An adversary establishes a relay link between two far away honest parties (P and V)
- The prover correctly authenticates to the verifier and the door opens
- The adversary enters the door

Mafia fraud against PKES

Passive Keyless Entry and Start

Mafia fraud against PKES

Mafia fraud against PKES

Car model	Relay cable							
	7 m		30 m		60 m			Without
	open	go	open	go	open	go	\checkmark	amplification
Model 1	~	~	~	\checkmark	\checkmark	~		
Model 2	~	\checkmark	Α	Α	Α	Α	-	\A/itb
Model 3	~	\checkmark	~	~	~	~	A	amplification
Model 4	~	\checkmark	-	-	-	-	F	•
Model 5	~	~	~	~	~	~	F	
Model 6	~	\checkmark	Α	Α	Α	Α	_	Not tested
Model 7	~	\checkmark	Α	Α	-	-	-	
Model 8	~	Α	~	Α	-	-	-	
Model 9	~	\checkmark	~	\checkmark	~	~	-	
Model 10	✓	\checkmark	\checkmark	\checkmark	-	-		

Wormhole attack

- False assumption: "if A hears an (authenticated) beacon message from B, then B and A are in the proximity"
- The adversary establishes a (wireless) link between two far away nodes (the wormhole)

Distance bounding protocol

- Countermeasure: precisely measure the round trip-time between a challenge and a response messages
- If the round-trip time is too large, reject the authentication (a mafia fraud could be present!)
- The challenges and the responses must be externally unpredictable

Brands-Chaum protocol (type I)

Distance bounding protocol

2009 implementation

Distance bounding protocol

- Distance reduction attack: make the distance appear shorter than real
- Infeasible with distance bounding

Secure positioning

- Measure the position of a device (e.g. a wireless sensor) in presence of an adversary
- Useful for securing a lot of applications
 - geographic routing
 - robot/drone guidance
 - position based security/authentication

- Multilaterate a device by means of wireless distance bounding
- Check if the measured distance is inside the verifiers' polygon (*in-polygon check*)

Spoofing a position inside the polygon always requires a distance reduction

Case of "inside-inside" spoofing

Distance reduction against V₃ (impossible)

Case of "outside-inside" spoofing

Distance reduction against V₂ (impossible)

Coverage

• The coverage area is smaller than (classic) multilateration

Coverage

- Multilateration by means of wireless distance bounding protocols
- Only the red triangle is covered (not outside)

Enlargement attacks

- The problem is that reduction attacks are impossible, but *enlargement attacks* are (considered) possible
 - The adversary waits for a legitimate protocol execution
 - She jams the response and repeats it just after
 - The round-trip time (and consequently the measured distance) is *enlarged*

What is the real feasibility of performing an enlargement attacks?

- The feasibility of an enlargement attack highly depends on the PHY protocol
- We studied the feasibility of enlargement attacks within the standard PHY modulation IEEE 802.15.4a

IEEE 802.15.4a UWB

• Impulse-radio ultra-wide band (IR-UWB)

- >= 500MHz bandwidth (each channel)
- The instant of pulse arrival is precisely measurable
- In a multi-path environment, the replicas remain distinct

IEEE 802.15.4a UWB

• Time-of-arrival (ToA) estimation algorithm

Search-back

ToA estimation algorithm

• Jump-back-search-forward algorithm:

• Search-back algorithm:

Enlargement attack best tactics

against jump-back-search-forward algorithm

Enlargement attack best tactics

against search-back algorithm

- Enlargement-miscontrol detection multilateration
- Idea: detect an attack by detecting the imprecision of the adversary in enlargement attacks

(Real-life) multilateration

• In presence of ranging errors: *least-squarederror solution* (LSE)

Q

V₁

 V_2

6

The residuals of the problem indirectly measure the position precision

0

 V_3

- Repeat each distance bounding K times and average the results
 - The adversary has to enlarge *K* times in a coherent manner
 - The honest system gets more precise, and we can detect more easily the small imprecisions of the adversary

Random-objective adversary: the adversary chooses a random objective

Chosen-objective adversary: the adversary chooses the easiest objective

